[1]张志文,严小敏,邓文华,等.1100 kV B类接地开关三维电场数值计算与优化设计[J].高压电器,2019,55(03):8-14.[doi:10.13296/j.1001-1609.hva.2019.03.002]
 ZHANG Zhiwen,YAN Xiaomin,DENG Wenhua,et al.Numerical Calculation of There-dimensional Electric Field and Optimal Design of 1 100 kV Class B-type Earthing Switch[J].High Voltage Apparatus,2019,55(03):8-14.[doi:10.13296/j.1001-1609.hva.2019.03.002]
点击复制

1100 kV B类接地开关三维电场数值计算与优化设计()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年03期
页码:
8-14
栏目:
研究与分析
出版日期:
2019-03-06

文章信息/Info

Title:
Numerical Calculation of There-dimensional Electric Field and Optimal Design of 1 100 kV Class B-type Earthing Switch
作者:
张志文1 严小敏1 邓文华2 王春华2 赵健康1
1. 湖南大学电气与信息工程学院, 长沙 410082; 2. 湖南长高高压开关集团股份公司, 长沙 410219
Author(s):
ZHANG Zhiwen1 YAN Xiaomin1 DENG Wenhua2 WANG Chunhua2 ZHAO Jiankang1
1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China; 2. Hunan Changgao High Voltage Switch Gear Group Co., Ltd., Changsha 410219, China
关键词:
特高压 B类接地开关 有限元法 三维电场 动触头优化 均压环优化 静电感应电流
Keywords:
ultra-high voltage B-type earthing switch finite element method there-dimensional electric field optimal design of moving contact optimal design of grading ring electrostatic induction current
DOI:
10.13296/j.1001-1609.hva.2019.03.002
摘要:
接地开关的静电场仿真计算可以指导产品的结构优化,从而缩短产品研发周期降低产品研发费用。为了得到接地开关表面电场,以承德特高压串补用串1 100 kV B 类接地开关为样本,计算接地开关分闸状态下表面电场分布。首先依据设计尺寸利用SolidWorks软件对接地开关进行实体建模;然后依据三维有限元数值计算法对接地开关典型时刻下的电场电位进行了三维有限元仿真计算,得出其电位及表面电场分布;仿真结果显示高场强出现在辅助回路均压环、静触头均压环及动触头表面;接着对接地开关高场强区域进行了优化设计,优化后均压环表面场强在安全范围内,动触头表面场强得到显著改善;最后对优化后的接地开关进行静电感应电流开合试验,试验通过,证明了优化的合理性。该仿真结果可以为1 100 kV B类接地开关的研发及推广提供理论参考。
Abstract:
The electrostatic field simulation can help to guide the structure optimization of an earthing switch, shorten the product development cycle, and reduce the product development costs. In this study, a 1 100 kV B-type earthing switch for the supplemental lines of Chengde UHV transmission line was taken as an example to calculate the electric field distribution around the switch surface in open state. Firstly, according to the design dimensions, a three-dimensional mathematical model was established using the software SolidWorks. Secondly, according to the three-dimensional finite element numerical method, the finite element analysis software was used to calculate and analyze the electric potential and electric field around the earthing switch surface at the typical moment, thus the electric potential and field distribution were obtained. Simulation result showed that higher electric field intensity appeared on the auxiliary loop grading ring, static contact grading rings and moving contact. Thirdly, optimal design for these high electric field intensity areas was carried out, consequently the electric field around grading ring surface was in safe range, and the electric field around moving contact surface was significantly improved. Finally, electrostatic induction current switching tests were conducted on the optimized earthing switch, verifying the rationality of the optimization. This study may provide a theoretical reference for development and popularization of 1 100 kV B-type earthing switch.

参考文献/References:

[1] 何金良,张 波,曾 嵘,等 1 000 kV特高压变电站接地系统的设计[J]. 中国电机工程学报,2009,34(7):7-12.
HE Jinliang,ZHANG Bo,ZENG Rong,et al. Grounding system design of 1 000 kV ultra-high voltage substation[J]. Proceedings of the CSEE,2009,34(7):7-12.
[2] 田冀焕,沙彦超,周远翔,等. 800 kV等级高压隔离开关的交、直流电场仿真计算[J]. 高电压技术,2011,37(5):1216-1223.
TIAN Jihuan,SHA Yanchao,ZHOU Yuanxiang,et al. Simulation of AC and DC electric field for 800 kV grade high voltage disconnector[J]. High Voltage Engineering,2011,37(5): 1216-1223.
[3] 刘雨芳,周腊吾,邓文华,等. 550 kV隔离开关静触头电场数值计算与均压环设计[J]. 高压电器,2016,52(9):65-70.
LIU Yufang,ZHOU Lawu,DENG Wenhua,et al. Numerical calculation of electric field and design of grading ring for fixed contact of 550 kV disconnector[J]. High Voltage Apparatus,2016,52(9):65-70.
[4] 游贤衡. 高压隔离接地模块三维静电场分析及结构改进[D]. 昆明:昆明理工大学,2013.
YOU Xianheng. Analysis and structure improvement of the 3-D electrostatic field of the high-voltage isolation grounding module[D]. Kunming:Kunming University of Science and Technology,2013.
[5] 徐建源,路 璐,林 莘. 1 100 kV GIS隔离开关的电场数值计算与分析[J]. 高电压技术,2008,34(10):2102-2106.
XU Jianyuan,LU Lu,LIN Xin. Numerical analysis of electric field of 1 100 kV disconnector in GIS[J]. High Voltage Engineering, 200,34(10): 2102-2106.
[6] 路 璐. 特高压GIS隔离开关的电场特性及绝缘性能研究[D]. 沈阳:沈阳工业大学,2009.
LU Lu. The research of electric field and insulation characteristic for ultra high voltage disconnector[D]. Shenyang: Shenyang University of Technology,2009.
[7] 林 莘,司秉娥,徐建源,等. 1 100 kV GIS中隔离开关及故障接地开关电场数值分析[J]. 沈阳工业大学学报,2007,29(5):524-528.
LIN Xin,SI Bing’e,XU Jianyuan,et al. Electric field numerical analysis of extra-high voltage disconnector and fault earthing switch in 1 100 kV GIS[J]. Journal of Shenyang University of Technology,2007,29(5): 524-528.
[8] 徐建源,司秉娥,林 莘,等. 基于虚拟介电常数法的特高压GIS中隔离开关电场参数计算[J]. 电工技术学报,2008,23(5):37-42.
XU Jianyuan, SI Bing’e, LIN Xin, et al. Electric field parameter calculation of extra-high voltage GIS disconnector based on dummy dielectric constant method[J]. Transactions of China Electrotechnical Society,2008,23(5): 37-42.
[9] 林 莘,蔡 强,徐建源,等. 基于区域分解法的1 100 kV隔离开关大规模电场计算问题[J]. 高压电器,2011,47(2):1-6.
LIN Xin,CAI Qiang,XU Jianyuan,et al. Large scale of electric field calculation of 1 100 kV disconnector based on domain decomposition method[J]. High Voltage Apparatus,2011,47(2): 1-6.
[10] 黄道春,阮江军,刘守豹. 特高压交流复合绝缘子电位和均压环表面电场分布计算[J]. 高电压技术,2010,36(6):1442-1447.
HUANG Daochun,RUAN Jiangju,LIU Shoubao. Potential distribution along UHV AC transmission line composite insulator and electric field distribution on the surface of grading ring[J]. High Voltage Engineering,2010,36(6): 1442-1447.
[11] 司马文霞,武 坤,李立浧,等. 800 kV 线路直流复合绝缘子均压环结构研究[J]. 高电压技术,2007,33(11):33-36.
SIMA Wenxia,WU Kun,LI Licheng,et al. Optimization of corona ring design for 800 kV UHV DC transmission lines[J]. High Voltage Engineering,2007,33(11): 33-36.
[12] 司马文霞,杨 庆,孙才新,等. 基于有限元和神经网络方法对超高压合成绝缘子均压环结构优化的研究[J]. 中国电机工程学报,2005,25(17):115-120.
SIMA Wenxia,YANG Qing,SUN Caixin,et al. Optimization of corona ring design for EHV composite insulator using finite element and neural network method[J]. Proceedings of the CSEE, 2005,25(17): 115-120.
[13] 梁 超. 特高压电气设备的电场特性及绝缘性能的研究[D]. 沈阳:沈阳工业大学,2010.
LIANG Chao. The research of electric field and insulation characteristic for UHV electric appliance[D]. Shenyang: Shenyang University of Technology,2010.
[14] 徐光辉. 800 kV隔离开关屏蔽环设计[J]. 高压电器, 2006,42(5):337-339.
XU Guanghui. Design of the shielding ring of 800 kV disconnector[J]. High Voltage Apparatus. 2006,42(5): 337-339.
[15] 田冀焕,周远翔,郭绍伟,等. 直流换流站阀厅内三维电场的分布式并行计算[J]. 高电压技术,2010,36(5):1205-1210.
TIAN Jihuan,ZHOU Yuanxiang,GUO Shaowei,et al. Distributed parallel computation of the 3D electric field in the HVDC converter valve hall[J]. High Voltage Engineering,2010, 36(5):1205-1210.
[16] 谢天喜,莫 娟,彭宗仁,等. 500 kV 紧凑型线路悬垂复合绝缘子均压环电晕抑制分析[J]. 高电压技术,2010,36(7): 1779-1784.
XIE Tianxi,MO Juan,PENG Zongren,et al. Corona suppression of grading rings on suspension composite insulators on 500 kV compact transmission line[J]. High Voltage Engineering, 2010, 36(7): 1779-1784.
[17] 唐铭骏,叶丽莎,林春耀,等. 500 kV站用绝缘子串均压环优化设计[J]. 高压电器,2015,51(5):63-70.
TANG Mingjun,YE Lisha,LIN Chunyao,et al. Optimization of shielding ring of insulator string in 500 kV substation[J]. High Voltage Apparatus,2015,51(5): 63-70.
[18] 刘 振,卞星明,王黎明,等. 特高压直流复合绝缘子均压环设计[J]. 高电压技术,2006,32(12):137-141.
LIU Zhen,BIAN Xingming,WANG Liming,et a1. Calculation of electric field distribution along composite insulator strings and design of grading ring of UHVDC transmission line[J]. High Voltage Engineering,2006,32(12): 137-141.
[19] 薄学微,卞星明,王黎明,等. 750 kV 交流复合绝缘子均压环优化设计[J]. 高压电器,2010,46(12):5-8.
BO Xuewei,BIAN Xingming,WANG Liming,et al. Optimal design of grading rings for 750 kV AC composite insulator[J]. High Voltage Apparatus,2010,46(12): 5-8.
[20] 李 禾,王 闯,刘 鹏,等. 1000 kV特高压交流变电站铝管母线末端屏蔽方式研究[J]. 电网技术,2014,38(9):2562-2569.
LI He,WANG Chuang,LIU Peng,et al. Study on terminal shielding way of aluminum tubular bus in 1 000 kV UHV AC substations[J]. Power System Technolog,2014,38(9): 2562-2569.
[21] ZHAO T,COMBER M G. Calculation of electric field and potential distribution along nonceramic insulators considering the effects of conductors and transmission towers[J]. IEEE Trans. on Power Delivery,2000,15(1): 313-318.
[22] ZHANG B,HAN S J,HE J L,et al. Numerical analysis of electric-field distribution around composite insulator and head of transmission tower[J]. IEEE Transactions on Power Delivery, 2006,21(2): 959-965.
[23] 谢德馨,杨仕友. 工程电磁场数值分析与综合[M]. 北京:机械工业出版社, 2009.
XIE Dexin, YANG Shiyou. Numerical analysis and integration of engineering electromagnetic[M]. Beijing: China Machine Press, 2009.
[24] Ansys Inc. Machanical APDL basic analysis guide, chapter5: Solution[R]. [S.l.]: Ansys Inc.,2009.
[25] 冯慈璋,马西奎. 工程电磁场导论[M]. 北京:高等教育出版社2008.
FENG Cizhang,MA Xikui. Introduction to engineering electromagnetic fields[M]. Beijing: Higher Education Press, 2008.

备注/Memo

备注/Memo:
收稿日期:2018-07-14; 修回日期:2018-09-14 基金项目:国家自然科学基金资助项目(51477046)。 Project Supported by National Natural Science Foundation of China(51477046). 张志文(1963—),男,教授,博士生导师,研究方向为交直流电能变换系统理论与新技术、现代电气装备自动化与新技术、电力系统谐波抑制。 严小敏(1992—),女,硕士研究生,研究方向为高电压与绝缘技术、电磁场数值计算(通信作者)。
更新日期/Last Update: 2019-03-15