[1]张 楠,申子魁,杨继红,等.强风作用下复合空心绝缘子的电场计算[J].高压电器,2020,56(03):111-117.[doi:10.13296/j.1001-1609.hva.2020.03.016]
 ZHANG Nan,SHEN Zikui,YANG Jihong,et al.Electric Field Calculation of Composite Hollow Insulator with Strong Wind Reflection[J].High Voltage Apparatus,2020,56(03):111-117.[doi:10.13296/j.1001-1609.hva.2020.03.016]
点击复制

强风作用下复合空心绝缘子的电场计算()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年03期
页码:
111-117
栏目:
研究与分析
出版日期:
2020-03-30

文章信息/Info

Title:
Electric Field Calculation of Composite Hollow Insulator with Strong Wind Reflection
作者:
张 楠1 申子魁2 杨继红1 赵海鹏1 谷倩倩1 贾志东2张豪峰2 关志成2
(1. 国网新疆电力公司检修公司, 乌鲁木齐 830000; 2. 清华大学深圳研究生院深圳复杂滨海环境电力装备可靠性工程实验室, 广州 深圳518055)
Author(s):
ZHANG Nan1 SHEN Zikui2 YANG Jihong1 ZHAO Haipeng1 GU Qianqian1 JIA Zhidong2 ZHANG Haofeng2 GUAN Zhicheng2
(1. Xinjiang Power Supply Company Maintenance Company, Urumqi 830000, China; 2. Engineering Laboratory of Power Equipment Reliability in Complicated Coastal Environment, Graduate School at Shenzhen, Tsinghua University, Guangdong Shenzhen 518055, China)
关键词:
复合空心绝缘子 温升 风偏量 电场计算
Keywords:
composite hollow insulator temperature rise wind reflection electric field calculation
DOI:
10.13296/j.1001-1609.hva.2020.03.016
摘要:
高压断路器进出线的复合空心绝缘子主体长约8~10 m,弹性模量远小于瓷绝缘子。复合空心绝缘子在强风下会产生风偏,风偏量受风速大小和工作自身弹性模量影响。大幅风偏是否会引起复合空心绝缘子内外电场强度的畸变,劣化内外绝缘鲜有研究。由于高压复合空心绝缘子成本高,投运时间短,退运下来的样品较少。文中采用有限元分析的方法模拟强风工况,进行电场计算。针对750 kV断路器复合空心绝缘子在强风下振动的1阶模态振型,计算绝缘关键区域的电场强度,阐明风偏对接地屏蔽电极附近的电场畸变的危害最大,并给出了风速阈值。文中指出应该监测强风地区的风速、玻璃钢管的工作温度以及复合空心绝缘子的风偏量。
Abstract:
The composite hollow insulator has a length of about 8 ~ 10 m, and the elastic modulus is less than porcelain insulator. The strong wind deflects the composite hollow insulator, where the wind deflection is affected by the wind speed and the elastic modulus under the working situation. Whether the large wind deflection will cause the distortion of the electric field strength inside and outside the composite hollow insulator, is rarely studied. Due to the high cost and fewer returned samples, in this paper, finite element analysis method is used to simulate the electric field the strong wind conditions. According to the first order modal vibration mode of the composite hollow insulator of 750 kV, the electric field in the critical region of the insulation is calculated. It is clarified that the wind reflection can cause severe distortion of the electric field near the grounding shield electrode. This paper points out that in the strong wind area, the wind speed, the working temperature of the FRP pipe and the wind reflection of the composite hollow insulator should be monitored.

参考文献/References:

[1] 关志成. 绝缘子及输变电设备外绝缘[M]. 北京:清华大学出版社,2006. GUAN Zhicheng. Insulators and external insulation of power transmission and transformation equipment[M]. Beijing: Tsinghua University Press,2006.
[2] 李乃一,彭宗仁,刘 鹏. 特高压SF6气体绝缘套管内屏蔽结构研究[J]. 高电压技术,2015,41(11): 3737-3745. LI Naiyi,PENG Zongren,LIU Peng. Investigation of inner shielding structure for ultra-high voltage SF6 gas-insulated bushing[J]. High Voltage Engineering, 2015,41(11): 3737-3745.
[3] 张施令,彭宗仁,杜进桥,等. RBF神经网络与NSGA-II混合算法用于±1 100 kV穿墙套管3维电场模拟及内屏蔽结构优化[J]. 高电压技术,2014,40(6): 1847-1857. ZHANG Shiling,PENG Zongren,DU Jinqiao,et al. Three-dimensional electric field simulation and inner shielding structure optimization of ±1 100 kV wall bushing with rbf neural network and NSGA-II algorithm[J]. High Voltage Engineering. 2014,40(6): 1847-1857.
[4] 金松安,李 龙,魏劲容,等. 1 100 kV变压器套管抗震性能研究[J]. 高压电器,2016,52(3):100-104. JIN Song’an,LI Yong,WEI Jinrong,et al. Study on Anti-seismic performance of 1 100 kV transformer bushing[J]. High Voltage Apparatus,2016,52(3):100-104.
[5] 张书琴,张克选,高延峰. 交流550 kV SF6高压套管的绝缘设计研究[J]. 高压电器,2015,51(2):106-111. ZHANG Shuqin, ZHANG Kexuan, GAO Yanfeng. Insulation design of AC 550 kV SF6-insulated high voltage bushing[J]. High Voltage Apparatus,2015,51(2):106-111.
[6] 钟建英,狄 谦. 550 kV SF6气体绝缘GIS套管内屏蔽结构研究[J]. 高压电器,2011,47(4):33-36. ZHONG Jianying,DI Qian. Research of 550 kV SF6 gas-insulated gis bushing inner shielding layer[J]. High Voltage Apparatus,2011,47(4):33-36.
[7] 江 汛,王仲奕. 复合高压套管的电场计算和分析[J]. 高电压技术,2004,30(3): 17-18. JIANG Xun,WANG Zhongyi. Calculation and analysis for the electric filed of composite high voltage bushing[J]. High Voltage Engineering,2004,30(3): 17-18.
[8] 金立军,郭 裕,薛义飞,等. 高压绝缘套管电场分析及结构优化[J]. 高压电器,2015,51(4): 7-12. JIN Lijun, GUO Yu, XUE Yifei,et al. Electric field analysis and structure optimization for high voltage insulation bushing[J]. High Voltage Apparatus,2015,(4):7-12.
[9] 张施令, 彭宗仁, 刘 鹏, 等. 电热耦合模型应用于高压干式直流套管径向温度和电场分布计算[J]. 中国电机工程学报,2013,33(22): 191-200. ZHANG Shiling,PENG Zongen,LIU Peng,et al. Electro-thermal coupling model for computation of radial temperature and electric field of resin impregnated paper high voltage direct current bushing[J]. Proceedings of the CSEE, 2013,33(22): 191-200.
[10] 张施令, 彭宗仁, 刘 鹏, 等. 电热耦合模型应用于干式油气套管径向温度分布计算及其试验研究[J]. 电网技术,2012,(12): 289-296. ZHANG Shiling, PENG Zongren, LIU Peng,et al. Experimental study on electro-thermal coupling model applied in computation of radial temperature distribution of RIP oil-gas bushing condenser[J]. Power System Technology, 2012,(12): 289-296.
[11] 王青于, 杨 熙, 彭宗仁, 等. 应用三维电磁–热–流耦合场分析法计算换流变压器干式套管的温度场分布[J]. 中国电机工程学报,2016,36(22): 6269-6275. WANG Qingyu, YANG Xi, PENG Zongren,et al. 3D coupled electromagnetic-thermal-fluid method for computation of temperature field of converter transformer RIP bushings[J]. Proceedings of the CSEE, 2016,36(22): 6269-6275.
[12] 熊令芳. Ansys 工程结构数值分析方法与计算实例[M]. 北京:中国铁道出版社,2015. XIONG Lingfang. Numerical analysis method and calculation example of engineering structure based on ansys[M]. Beijing: China Railway Publishing House,2015.
[13] 黄志新. Ansys Workbench 14.0 超级学习手册[M]. 北京:人民邮电出版社, 2013. HUANG Zhixin. Ansys workbench 14.0 super learning manual[M]. Beijing: People Post Press,2013.
[14] 马 慧. COMSOL Multiphysics基本操作指南和常见问题解答[M]. 北京:人民交通出版社, 2009. MA Hui. COMSOL Multiphysics basic operation guide and FAQ [M]. Beijing: People’s Communications Press,2009.
[15] 王 刚. COMSOL Multiphysics工程实践与理论仿真:多物理场数值分析技术[M]. 北京:电子工业出版社,2012. WANG Gang. COMSOL Multiphysics engineering practice and theoretical simulation: multiphysics numerical analysis techniques[M]. Beijing: Electronic Industry Press, 2012.
[16] 孔维贞,方 江. 145 kV SF6气体绝缘复合,套管的小型化研究与设计[J]. 高压电器,2013,49(3): 85-90. KONG Weizhen,FANG Jiang. Miniaturization design of 145 kV SF6 gas insulated composite bushing[J]. High Voltage Apparatus,2013,49(3): 85-90.
[17] 张亚军,李 鑫,刘鸿斌,等. 220 kV空心复合绝缘子电场计算和优化[J]. 华北电力技术. 2012(6): 16-19. ZHANG Yajun, LI Xin, LIU Hongbin. Calculation and optimization of electric field for 220 kV composite hollow insulators[J]. North China Electric Power,2012(6): 16-19.
[18] 王 斌,彭宗仁. 500 kV线路绝缘子电压分布的有限元法计算[J]. 电瓷避雷器,2003(1): 13-15. WANG Bin,PENG Zongren. A finite element method for the calculation of the voltage distribution along the 500 kV line insulators[J]. Insulators and Surge Arresters,2003(1):13-15.
[19] DAN S,LI Y,LI W. Electric field calculation and analysis of 35kV composite bushing[C]//HYPERLINK Asia-Pacific Power and Energy Engineering Conference. Chengdu, China: IEEE,2010:1-5.
[20] LEELAVATHY V,KUMAR S S. Optimal design of grading ring and analysis of electric field of 800 kV UHVDC bushing[C]//HYPERLINK “https://ieeexplore.ieee.org/xpl/conhome/7190493/proceeding”-IEEE International Conference on-Electrical, Computer and Communication Technologies (ICECCT). Coimbatore,India: -IEEE,2015:1-5.
[21] ZHANG S,WU H,LI H,et al. Electric field calculation and shield optimization for 1 000 kV GIS bushing[J]. IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). 2015:656-659.
[22] 黄桂春,何柏娜. 500 kV GIS套管二维电场的Ansys分析[J]. 山东理工大学学报(自然科学版). 2016(1): 63-66. HUANG Guichun,HE Bona. Research on electric field of 500 kV GIS bushing by Ansys[J]. Journal of Shangdong University of Technology(Natural Science Edition). 2016(1):63-66.
[23] 黎 斌. SF6高压电器设计[M]. 第4版. 北京: 机械工业出版社, 2015: 54-67. LI Bin. SF6 high voltage apparatus design[M]. 4th ed. Beijing: Mechanical Industry Press,2015:54-67.

备注/Memo

备注/Memo:
收稿日期:2019-10-19; 修回日期:2019-12-17 基金项目:国家自然科学基金(51477085);国家电网公司科技项目资助(SGTYHT/15-JS-191)。 Project Supported by National Natural Science Foundation of China(51477085),State Grid Science and Technology Project (SGTYHT/15-JS-191).张 楠(1980—),男,本科,从事变电站一次设备维护工作。 申子魁(1994—),男,在读博士生,主要从事电气设备绝缘研究。 贾志东(1966—),男,博士,教授,博导,长期从事高电压外绝缘及电工新技术等方面的研究,内容包括外绝缘防污闪技术,绝缘子覆冰问题,大型电机主绝缘老化等。
更新日期/Last Update: 2020-03-15