[1]周兴梅,彭庆军,马 仪,等.干式空芯电抗器线圈径向厚度对自感几何系数及支路电流分布影响研究[J].高压电器,2020,56(03):128-134.[doi:10.13296/j.1001-1609.hva.2020.03.019 ]
 ZHOU Xingmei,PENG Qingjun,MA Yi,et al.Influence of Coil Radial Thickness of Dry-type Air-core Reactor on Self-inductance Geometric Coefficient and Branch Current Distribution[J].High Voltage Apparatus,2020,56(03):128-134.[doi:10.13296/j.1001-1609.hva.2020.03.019 ]
点击复制

干式空芯电抗器线圈径向厚度对自感几何系数及支路电流分布影响研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年03期
页码:
128-134
栏目:
研究与分析
出版日期:
2020-03-30

文章信息/Info

Title:
Influence of Coil Radial Thickness of Dry-type Air-core Reactor on Self-inductance Geometric Coefficient and Branch Current Distribution
作者:
周兴梅1 彭庆军1 马 仪1 钱国超1 邹德旭1 姜雄伟2
(1. 云南电网有限责任公司电力科学研究院, 昆明 650106; 2. 重庆大学输配电装备及系统安全与新技术国家重点实验室, 重庆 400044)
Author(s):
ZHOU Xingmei1 PENG Qingjun1 MA Yi1 QIAN Guochao1 ZOU Dexu1 JIANG Xiongwei2
(1. Electric Power Research Institute of Yunnan Power Grid Corporation, Kunming 650106, China; 2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)
关键词:
干式空芯电抗器 有限元仿真 自感几何系数 支路电流
Keywords:
dry-type air-core reactor finite element simulation self-inductance geometric coefficient branch current
DOI:
10.13296/j.1001-1609.hva.2020.03.019
摘要:
深入开展35 kV干式空芯电抗器线圈径向厚度对自感几何系数及支路电流分布的影响研究,对提高35 kV干式空芯电抗器设计水平、工艺控制和电抗器的安全、可靠运行,具有重要意义。为此,文中通过有限元方法,研究了35 kV干式空芯电抗器线圈径向厚度对自感几何系数及支路电流分布的影响,研究结果表明:线圈径向厚度通过影响线圈的自感几何系数进而影响电抗器支路电流的分布、电抗器的总损耗,线圈径向厚度偏差加剧了包封温升。当第一支路匝数偏差1.5%时,可使支路二电流增大139.4%,总的功率损耗增大21.4%。
Abstract:
To improve the design level, process control and to provide safe and reliable operation of 35 kV dry-type air-core reactor, the research on the influence of the coil radial thickness of 35 kV dry-type air-core reactor on the self-inductance geometric coefficient and branch current distribution is of great significance. Therefore, the influence of coil radial thickness of 35 kV dry-type air-core reactor on the self-inductance geometric coefficient and branch current distribution is studied via the finite element method. The results show that by affecting the self-inductance geometry coefficient of the coil, the coil radial thickness affects the distribution of branch current, the total loss and the temperature rise of the reactor. When the turn deviation of the first branch reaches 1.5%, the current in the second branch increases by 139.4%, and the total power loss increases by 21.4%.

参考文献/References:

[1] 付炜平,赵京武,霍春燕. 一起35 kV 干式电抗器故障原因分析[J]. 电力电容器与无功补偿,2011,32(1):59-62. FU Weiping, ZHAO Jingwu, HUO Chunyan. Reason analysis for a 35 kV dry type reactor fault[J]. Power Capacitor & Reactive Power Compensation,2011,32(1): 59-62.
[2] 付银仓. 关于户外干式空心电抗器的设计[J]. 电力电容器与无功补偿,2008,29(6):15-19. FU Yincang.Design of outdoor dry-type air core shunt reactor[J]. Power Capacitor & Reactive Power Compensation,2009,30(5): 43-45.
[3] 刘志刚,耿英三,王建华,等. 干式空心电抗器的优化设计[J]. 高电压技术,2003,29(2):35-38. LIU Zhigang,GENG Yingsan,WANG Jianhua,et al. The optimum design of dry-type air-core reactor[J]. High Voltage Engineering,2003,29(2): 35-38.
[4] 吴红波. 干式串联铁心电抗器设计中应注意的一些问题[J]. 高压电器,2010,46(6):103-105. WU Hongbo. Some suggestions to design of dry type series iron-core reactor[J]. High Voltage Apparatus,2010,46(6): 103-105.
[5] 苗俊杰,姜庆礼. 500 kV 变电站35 kV 干式电抗器故障分析[J]. 电力电容器与无功补偿,2012,33(2):65-69. MIAO Junjie,JIANG Qingli. Fault analysis of a 35 kV dry-type reactor in 500 kV substation[J]. Power Capacitor & Reactive Power Compensation,2012,33(2): 65-69.
[6] 崔志刚. 干式空心并联电抗器故障原因分析探讨[J]. 变压器,2012,49(3): 61-63. CUI Zhigang. Analysis and discussion on fault in dry type shunt reactor with air core[J]. Transformer,2012,49(3): 61-63.
[7] 徐林峰. 一起干式空心串联电抗器的故障分析[J]. 电力电容器与无功补偿,2008,29(2):50-54. XU Linfeng. Fault analysis of dry-type air-core series reactor[J]. Power Capacitor & Reactive Power Compensation,2008,29(2): 50-54.
[8] 夏长根. 一起35 kV干式并联空心电抗器故障分析[J]. 电力电容器与无功补偿,2009,30(5):43-45. XIA Changgen. Analysis of fault of a 35 kV dry-type air core shunt reactor[J]. Power Capacitor & Reactive Power Compensation,2009,30(5):43-45.
[9] 朱 敏. 空心电力电抗器设计计算相关问题及计算机辅助设计[D]. 哈尔滨:哈尔滨理工大学,2003. ZHU Min. Design and calculation of related problems of hollow reactor and computer aided design[D]. Harbin:Harbin University of Science and Technology,2003.
[10] 李永明,徐禄文,俞集辉,等.35 kV干式空心电抗器下工频磁场抑制[J]. 高电压技术,2010,36(12):2960-2964. LI Yongming,XU Luwen,YU Jihui,et al. Intensity control of power frequency magnetic field under 35 kV dry-type air-core reactor[J]. High Voltage Engineering,2010,36(12): 2960-2964.
[11] 季 娟,俞集辉,袁一飞,等. 空心电抗器磁场分布和防护体架设研究[J]. 高压电器,2009,45(6):61-64. JI Juan,YU Jihui,YUAN Yifei,et al. Research of the magnetic field distribution and protection body setting for air-core reactor[J]. High Voltage Apparatus,2009,45(6): 61-64.
[12] 陈超强,文习山,张孝军,等. 空芯电抗器磁场对周围设施影响的测试研究[J]. 高电压技术,2001,27(3): 19-21. CHEN Chaoqiang,WEN Xishan,ZHANG Xiaojun,et al. Study and measurement on the influence of magnetic field of dry-type air core reactor on adjacent metal loop and communication apparatus[J]. High Voltage Engineering,2001,27(3): 19-21.
[13] 杜华珠,文习山,鲁海亮,等. 35 kV 三相空心电抗器组的磁场分布[J].高电压技术,2012,38(11):2858-2862. DU Huazhu,WEN Xishan,LU Hailiang,et al. Magnetic field distribution of 35 kV three phase core reactor[J]. High Voltage Engineering,2012,38(11): 2858-2862.
[14] 朱 敏,魏新劳,王永红,等. 空心电抗器计算机辅助设计系统的开发[J]. 黑龙江电力,2003,25(5):344-347. ZHU Min,WEI Xinlao,WANG Yonghong,et al. Development of computer aided design system for hollow reactor[J]. Heilongjiang Power,2003,25 (5): 344-347.
[15] 魏新劳,程树康,朱 敏,等. 大型三相空心电力电抗器相间电磁力计算[J]. 电机与控制学报,2002,6(3):195-199. WEI Xinlao,CHENG Shukang,ZHU Min,et al. Calculation of electromagnetic force in large three-phase hollow electric reactor[J]. Journal of Motor and Control,2002,6(3): 195-199.
[16] 楚金伟,陈伟民,张 良,等. 干式空心电抗器烧损故障研究分析[C]//高电压专业委员会2015年学术年会.西安:中国电机工程学会,2015:1-5. CHU Jinwei,CHNE Weimin,ZHANG Liang,et al. Research on the failure of dry hollow reactor burning loss[C]//Annual Conference High Voltage Professional Committee.Xi’an:China Academy of Electrical Engineering,2015:1-5.
[17] 钱之银,杨凌辉,朱 峰,等. 并联干式电抗器故障原因分析[J]. 华东电力,2000,28(12): 10-13. QIAN Zhiyin,YANG Linghui,ZHU feng,et al. Reason analysis of parallel dry-type reactors [J]. East China Power,2000,28 (12): 10-13.
[18] 廖敏夫,程 显,翟云飞. 干式空心电抗器脉冲振荡匝间绝缘检测系统的仿真与试验[J]. 高电压技术,2011,37(6):1343-1348. LIAO Minfu,CHENG Xian,ZHAI Yunfei. Simulation and test of pulse oscillation inter-turn insulation detection system for dry-type air-core reactor[J]. High Voltage Engineering,2011,37(6): 1343-1348.
[19] 张国兵,张文亮. 特高压交流输电系统中110 kV并联电抗器试验及匝间短路保护问题辨析[J]. 高电压技术,2012,38(2):303-309. ZHANG Guobing,ZHANG Wenliang. Analysis of 110 kV shunt reactor test and turn short circuit protection in UHV AC transmission system[J]. High Voltage Engineering,2012,38(2): 303-309.
[20] 阎秀恪,杨桂平,洛君婷,等. 空心电力电抗器的磁场研究与环流计算[J]. 变压器,2010,47(6):1-4. YAN Xiuke,YANG Guiping,LUO Junting,et al. Magnetic field research and circulation calculation of hollow power reactors[J]. Transformers,2010,47(6): 1-4.
[21] 江少成,戴瑞海,夏晓波,等. 干式空心电抗器匝间绝缘检测原理及试验分析[J]. 高压电器,2011,47(6):67-71. JIANG Shaocheng,DAI Ruihai,XIA Xiaobo,et al. Principle and analysis on inter-turn insulation detection of dry-type air-core reactor[J]. High Voltage Apparatus,2011,47(6): 67-71.
[22] 王 岩,谭向宇,束洪春,等. 工艺偏差对干式空心电抗器局部温升的影响分析研究[J]. 高压电器,2016(10):182-186. WANG Yan,TAN Xiangyu,SHU Hongchun,et al. Analysis of the effect of process deviation on local temperature rise of dry hollow reactor[J]. High Voltage Apparatus,2016(10): 182-186.
[23] 王贵山,李应宏,杨盛杰,等. 干式空心电抗器故障及运维策略分析[J]. 电力电容器与无功补偿,2015,36(6):82-85. WANG Guishan,LI Yinghong,YANG Shengjie,et al. Fault and operation strategy analysis of dry hollow reactor[J]. Power Capacitor and Reactive Power Compensation,2015,36(6): 82-85.

备注/Memo

备注/Memo:
收稿日期:2019-07-06; 修回日期:2019-12-20 基金项目:中国博士后科学基金资助(2014M552552XB)。 Project Supported by the China Postdoctoral Science Foundation(2014M552552XB).周兴梅(1981—),女,硕士,工程师,主要从事热能与动力技术、高电压技术及高温超导方面的研究工作。 彭庆军(1981—),男,博士后,高级工程师,主要从事高电压绝缘技术、多物理场有限元计算、空间电荷及绝缘材料状态评估研究工作(通讯作者)。
更新日期/Last Update: 2020-03-15