[1]李德军,刘志民,KOSSE M,等.一种先进的±550 kV高压直流GIS及其潜在应用[J].高压电器,2020,56(06):32-41.[doi:10.13296/j.1001-1609.hva.2020.06.006]
 LI Dejun,LIU Zhimin,KOSSE M,et al.State-of-the-art ±550 kV Direct Current High Voltage Gas Insulated Switchgear and Potential Applications[J].High Voltage Apparatus,2020,56(06):32-41.[doi:10.13296/j.1001-1609.hva.2020.06.006]
点击复制

一种先进的±550 kV高压直流GIS及其潜在应用()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年06期
页码:
32-41
栏目:
气体绝缘金属封闭电器
出版日期:
2020-06-20

文章信息/Info

Title:
State-of-the-art ±550 kV Direct Current High Voltage Gas Insulated Switchgear and Potential Applications
作者:
李德军1 刘志民2 KOSSE M3 KUSCHEL M4 JUHRE K4
(1. 西门子能源有限公司, 上海 200082; 2. 上海西门子高压开关有限公司, 上海 200245; 3. Siemens AG, EPC Transmission Solution, Erlangen 91058, Germany; 4. Siemens AG, Transmission Products, Berlin 13629, Germany)
Author(s):
LI Dejun1 LIU Zhimin2 KOSSE M3 KUSCHEL M4 JUHRE K4
(1. Siemens Energy Co., Ltd., Shanghai 200082, China; 2. Siemens High Voltage Switchgear Co., Ltd., Shanghai 200245, China;3. Siemens AG, EPC Transmission Solution, Erlangen 91058, Germany; 4. Siemens AG, Transmission Products, Berlin 13629, Germany)
关键词:
直流GIS 高压直流输电 绝缘子 表面电荷 电场强度分布 电场均匀化材料(FGM) 开关功能模块
Keywords:
Key words: direct current gas-insulated switchgear HVDC transmission insulator surface charge electric field distribution field grading material(FGM) functional modules of switchgear
DOI:
10.13296/j.1001-1609.hva.2020.06.006
摘要:
全球能源市场的变化如电能生产和用电负荷区域分布的变化、陆上及海上风能发电的增长促使高压直流输电和变电技术的进一步应用,变电站、换流站以及不同传输介质之间的转换站采用紧凑的直流气体绝缘开关(DC GIS)技术方案越来越多地成为最佳选择。与交流系统相比,直流GIS的绝缘系统有一些特殊性,如绝缘子表面电荷积聚现象、电导率对电荷积聚的影响、温度对电导率的影响、这些因素对电场强度分布的影响等。基于这些考虑,优化了绝缘系统的场强分布,设计了用于电压等级达±550 kV、额定电流高达5 000 A的直流GIS的新型环氧树脂绝缘子和隔离开关等必备功能模块。此外还讨论了引入电场均匀化材料(FGM)来进一步改善电场分布的可行性。具有典型功能模块配置的直流GIS通过了专门的介电性能试验、热电性能和机械性能试验,以及国际大电网会议CIGRE推荐的绝缘系统试验等。这项技术将用于德国计划中的南北直流输电线路的变电站。
Abstract:
Abstract: High voltage direct current (HVDC) transmission and transformation technology is increasingly distributed with the global change of power energy market e.g. power generation and load distribution, onshore and offshore wind power development. The compact direct current gas insulated switchgear(DC GIS) will be the optimal solution for more and more HVDC converter stations and transition stations between different transmission media. Compared with alternating current system the DC GIS insulation system features insulator surface charge accumulation, influence of conductivity on charge accumulation, influence of temperature on conductivity and that of all the factors on electric field distribution etc. Based on these physical properties, a new type of ±550 kV DC GIS epoxy insulator with rated current of 5 000 A and DC functional modules such as disconnector switches etc. have been designed. In additional, introduction of field grading material to optimize field distribution of insulation system is discussed. Typical DC GIS configuration with the functional modules has been proven by passing the specific dielectric tests, thermal and mechanical tests, and CIGRE insulation system test. The technology will be used in substations on Germany’s planned north-south DC transmission line.

参考文献/References:

[1] KOCH H.Gas-insulated substations[M]. Chichester:IEEE Press and John Wiley & Sons Ltd.,2014.
[2] CIGRE Working Group D1.28. Optimized gas-insulated systems by advanced insulation techniques[R]. CIGRE:Technical Brochure No. 571, 2014.
[3] 汪 沨,邱毓昌.直流气体绝缘开关装置绝缘设计的探讨[J]. 中国电力 2002,35(11):47-50.
WANG Feng,QIU Yuchang. Discussion on the electrical insulation design of the HVDC gas insulated switchgear[J]. Electric Power,2002,35(11):47-50.
[4] OKABE S. Phenomena and mechanism of electric charges on spacers in gas insulated switchgears[J]. IEEE Trans. Dielectrics and Electrical Insulation,2007(14):46-52.
[5] WINTER A,KINDERSBERGER J. Transient field distribution in gas-solid insulation systems under DC voltages[J]. IEEE Dielectrics and Electrical Insulation,2014(21):1116-1128.
[6] GREMAUD R,DOIRON C,BAUR M,et al. Solid-gas insulation in HVDC gas-insulated system,measurement,modeling and experimental validation for reliable operation[C]//CIGRE-Session 46.[s.n.]:CIGRE,2016: D1-101.
[7] ZAVATTONI L. Conduction phenomena through gas and insulation solids in HVDC gas insulated substations,and consequences on electric field distribution[D]. Grenoble:Universite de Grenoble,2015.
[8] HERING M. Uverschlagsverhalten von gas-feststoff-isoliersystemen unter gleichspannungsblelastung[D]. Dresden:Technische Universitat Dresden,2016.
[9] JUHRE K,HERING M. Influence of extreme temperature conditions on the gas-solid insulating system under DC voltage stress[C]//GIGRE D1 Kolloquium.Winnipeg:GIGRE,2017: D1-163.
[10] WENDEL T,KINDERSBERGER J,HERIGN M,et al. Space charge measurement in epoxy according to the pulsed electro acoustic method under consideration of attenuation and dispersion[C]//VDE-Fachtagung Hochspannungstechnik.Berlin:[S. l.],2018: 451.
[11] ZHAO S,KENDERSBERGER J,HERING M. et al. Measurement of surface potential at the gas solid interface for validation electric field simulations in gas insulated DC systems[C]//CIGRE Session.Paris:CIGRE,2018: D1-102.
[12] HERING M,SPECK J,GROSSMANN S. et al. Field transition in gas insulated HVDC system[J]. IEEE Dielectrics and Electrical Insulation,2017,24(3):1608-1616.
[13] SCHUELLER M,STRAUMANN U,FRANCK C M. Role of ion sources for spacer charging in SF6 gas insulated HVDC systems[J]. IEEE Dielectric and Electrical Insulation,2014,21(1):352-259.
[14] MA G,ZHOU H,LI C,et al. Designing epoxy insulators in SF6-filled DC GIL with simulations of ionic conduction and surface charging[J]. IEEE Dielectric and Electrical Insulation,2015,22(6):3312-3320.
[15] 唐 炬,潘 成,王邸博,等.高压直流绝缘材料表面电荷积聚研究进展[J]. 电工技术学报,2017,32 (8): 10-21.
TANG Ju,PAN Cheng,WANG Dibo,et al. Development of studies about surface charge accumulation on insulating material under HVDC[J]. Transactions of China Electrotechnical Society,2017,32(8):10-21.
[16] 汪 沨,方 志,邱毓昌. 高压直流GIS中绝缘子的表面电荷积聚的研究[J]. 中国电机工程学报 2005,25(3):106-109.
WANG Feng,FANG Zhi,QIU Yuchang. Study of charge accumulation on insulator surface in HVDC GAS-insulated Switchgear[J]. Proceeding of the CSEE,2005,25(3):106-109.
[17] 王邸博,唐 炬,刘 凯. 直流高压下GIS支柱绝缘子表面电荷积聚特性[J]. 高电压技术,2015,41(9):3073-3081.
WANG Di Bo,TANG Ju,LIU Kai. Charge accumulation on post insulator surface under HVDC in GIS[J]. High Voltage Engineering,2015,41(9): 3073-3081.
[18] 张贵新,王 蓓,王 强,等.直流电压下盆式绝缘子表面电荷积聚效应的仿真[J]. 高电压技术,2010,36(2): 335-339.
ZHANG Guixin,WANG Bei,WANG Qiang,et al. Simulation of accumulated surface charge effect on DC cone-type spacers[J]. High Voltage Engineering,2010,36(2):335-339.
[19] 齐 波,高春嘉,邢照亮,等.直流/交流电压下GIS绝缘子表面电荷分布特性[J]. 中国电机工程学报,2016,36(21): 5990-6001.
QI Bo,GAO Chunjia,XING Zhaoliang,et al. Distribution characteristic for surface charge on gis insulator under DC/AC voltage[J]. Proceeding of the CSEE,2016,36(21): 5990-6001.
[20] 胡 蓉.特高压直流GIL盆式绝缘子表面电荷分布特性仿真研究[J]. 高压电器,2018,54(5):127-132。
HU Rong.Simulation study on surface charge distribution characteristics of UHVDC GIL basin insulators[J]. High Voltage Apparatus,2018,54(5):127-132.
[21] 刘志民,邱毓昌,冯允平. 对绝缘子表面电荷积聚机理的讨论[J]. 电工技术学报,1999,14(2): 65-68.
LIU Zhimin,QIU Yuchang,FENG Yunping. The discussion about accumulation mechanism of surface charge on insulating spacer[J]. Transactions of China Electrotechnical Society,1999,14(2): 65-68.
[22] 周宏杨,马国明,赵书静,等. 温度对直流GIL绝缘子电荷积聚特性的影响[J]. 中国电机工程学报,2016,36(24): 6675-6681.
ZHOU Hongyang,MA Guoming,ZHAO Shujing,et al. Effect of temperature on charge accumulation on insulator in DC-GIL[J]. Proceeding of the CSEE,2016,36(24): 6675-6681.
[23] HERING M,JUHRE K,SECKLEHNER M,et al. Requirements on solid insulating materials and gas-solid interfaces in compact HVDC gas-insulated system[C]//20th International Symposium High Voltage Engineering.Buenos Aires,Argentina:IEEE,2017: 453.
[24] BOETTCHER B,MALIN G,STROBL R.Stress control system for composite insulators based on ZnO technology[J]. IEEE Transmission and Distribution Conference and Exposition,2001(2):776-780.
[25] RüGER R.Halbleitende metalloxid-pigmente mit nichtlinearen elektrischen eigenschaften[C]//RCC-Fachtagung.Berlin,IEEE,2012: 6.
[26] DONZEL L,GREUTER F,CHRISTEN T.Nonlinear resistive electric field grading Part 2: Materials and applications[J]. IEEE Electr. Insul. Mag.,2011,27(2):18-29.
[27] CHRISTEN T, DONZEL L,GREUTER F. Nonlinear resistive electric field grading Part 1: Theory and simulation[J]. IEEE Electr. Insul. Mag.,2010,26(6):48-60.
[28] CIGRE WG D1.03.Gas insulated systems for HVDC: DC stress at DC and AC systems[R]. CIGRE:CIGRE Technical brochure TB 506,2012.
[29] SPERLING. Eine realitatsnahe ubertragungsfunktion zur Beschreibung eines RC-teilers fur frequenzen bis 30 kHz-grundlagen eines optimierten designs[D]. Dresden:Technische Universitat Dresden,2018.
[30] APPELO H,GROENENBOOM M,LISSER J. The zero-flux DC current transformer-a high precision bipolar wide-band measuring device[J]. IEEE Transaction Nuclear Science,1887,24(3):1810-1811.
[31] BLUMENROTH F,RIECHERT U,STRAUMANN U,et al. Profverfaher fur gasisolierte HGU-komponenten und schaltgerate[C]//VDE-Hochspannungstechnik.Berlin:[S.l.],2016: 544.
[32] LUTZ B,JUHRE K, IMAMOVIC D. Long-term performance of gas insulated systems under HVDC stress[C]//19th International Symposium High Voltage Engineering. Pilsen:[S.l.],2015: 530.
[33] JUHRE K,HERING M. Testing and long-term performance of gas-insulated systems for DC application[C]//GIGRE-IEC Conference on EHV and UHV (AC&DC). Hakodate:GIGRE-IEC,2019: 10-14.
[34] HERING M,CLAUS M,TUCZED M. Gasisolierte gleichspannungsschaltanlagen zum einsatz auf offshore- konverter-plattformen. fachtagung hochspannungsschaltanlagen[C]// Anwendungen,Betrieb und Erfahrungen. Darmstadt:[S.l.],2018: 9.
[35] CIGRE WG B3.26. Guidelines for the design and construction of AC offshore substations for wind power plants[M]. UK: CIGRE,2011.
[36] Germany government decided to privilege underground installations for the north-south DC transmission lines. [EB/OL] 2018-07-12. https://www.siemens.com/press/PR201707
0370EMEN.

备注/Memo

备注/Memo:
收稿日期:2020-02-22; 修回日期:2020-04-24李德军(1976—),男,硕士,高级工程师,长期从事高压开关产品的设计、生产和技术管理工作。 刘志民(1966—),男,工学博士,研究方向为电气绝缘与高电压技术,长期从事高压开关产品的设计、生产和技术管理工作。 KOSSE M(née Hering)(1988—),female,Ph.D. Germany,been engaged in responsible for DC gas-insulated switchgear. KUSCHEL M(1969—),male,Ph.D.,Germany,been engaged in chief technology officer high voltage gas-insulated switchgear. JUHRE M(1972—),male,Germany,been engaged in management and key research in high-voltage gas-insulated switchgear for AC and DC systems.
更新日期/Last Update: 2020-06-15