[1]艾绍贵,衣立东,姚晓飞,等.126 kV真空断路器操动机构机械可靠性研究[J].高压电器,2020,56(07):77-85.[doi:10.13296/j.1001-1609.hva.2020.07.012]
 AI Shaogui,YI Lidong,YAO Xiaofei,et al.Research on Mechanical Reliability of Operating Mechanisms of 126 kV Vacuum Circuit Breakers[J].High Voltage Apparatus,2020,56(07):77-85.[doi:10.13296/j.1001-1609.hva.2020.07.012]
点击复制

126 kV真空断路器操动机构机械可靠性研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年07期
页码:
77-85
栏目:
研究与分析
出版日期:
2020-07-31

文章信息/Info

Title:
Research on Mechanical Reliability of Operating Mechanisms of 126 kV Vacuum Circuit Breakers
作者:
艾绍贵1 衣立东2 姚晓飞3 王建华3 黄永宁1 耿英三3樊益平1 刘志远3
(1. 国网宁夏电力有限公司电力科学研究院, 银川 750002; 2. 国网宁夏电力有限公司, 银川 750002; 3. 西安交通大学电气学院, 西安 710049)
Author(s):
AI Shaogui1 YI Lidong2 YAO Xiaofei3 WANG Jianhua3 HUANG Yongning1 GENG Yingsan3 FAN Yiping1 LIU Zhiyuan3
(1. State Grid Ningxia Electric Power Co., Ltd., Electric Power Research Institute, Ningxia 750002, China; 2. State Grid Ningxia Electric Power Co., Ltd., Ningxia 750002, China; 3. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049,
关键词:
真空断路器 机械可靠性 失效物理 可靠性物理 操动机构
Keywords:
vacuum circuit breaker mechanical reliability physics of failure reliability physics operating mechanism
DOI:
10.13296/j.1001-1609.hva.2020.07.012
摘要:
文中在分析讨论传统可靠性设计方法在真空断路器机械可靠性设计应用中存在局限性的基础上,提出基于失效物理和可靠性物理(PoF/RP)的真空断路器操动机构及其零部件可靠性设计方法,对操动机构内部传动部件的冲击疲劳寿命计算方法进行了理论分析。分别对126 kV单断口真空断路器弹簧操动机构、分离磁路式双稳态永磁操动机构,以及快速斥力机构在断路器合分闸操作冲击应力作用下易损部件的疲劳寿命进行了分析。计算结果显示:弹簧操动机构合分闸联锁挚子在断路器合分闸操作冲击应力的作用下其疲劳寿命计算结果为1 654次;双稳态永磁操动机构在断路器以2.5 m/s速度分闸、1.5 m/s速度合闸时,其动、静铁心在冲击应力作用下的疲劳寿命17 710次;快速斥力机构触头簧传动支撑部件在断路器以5.5 m/s速度分闸、1.3 m/s速度合闸过程中,其冲击疲劳寿命为302次;该计算结果与实验结果相近。
Abstract:
In this paper, based on the analysis of the traditional reliability design method has its instinct limitations in mechanical reliability design and application of vacuum circuit breaker, the mechanical reliability design method of a vacuum circuit breaker (VCB) and its components is proposed based on the physics of failure and reliability physics (PoF/RP) theory, the impulse fatigue life calculation method of the inner transmission parts of the operating mechanism is analyzed theoretically. The fatigue life of vulnerable components of three kinds of operating mechanism, spring-type operating mechanism, separated magnetic circuit type bistable-state permanent magnetic actuator, and high-speed repulsion operating mechanism, used in a 126 kV VCB are analyzed, respectively. Calculated results show that, the impulse fatigue life of the opening and closing inter-locking pawl is 1 654 operations, under the impact of impulse stress during the operation of the spring-type operating mechanism. The impulse fatigue life of the dynamic core and stationary core is calculated to be both 17 710 operations, when the permanent magnetic actuator operates with an opening velocity of 2.5 m/s and a closing velocity of 1.5 m/s. The impulse fatigue life of the supporting part, used as a dynamic transmission part for the contact spring, the impulse fatigue life is 302 operations, when the high-speed repulsion mechanism operates with an opening velocity of 5.5 m/s and a closing velocity of 1.3 m/s. The calculated results are verified to be approximate accordance with the onsite mechanical endurance test results.

参考文献/References:

[1] AWADALLAH S K,MILANOVIC J V. Quantification of aleatory and epistemic uncertainty in bulk power system reliability evaluation[C]//IEEE Grenoble Conference. Grenoble, France: IEEE,2013:1-6.
[2] DU X, LIU W. Evaluation of power system reliability based on the maintenance state[C]//4th International Conference.Weihai,China: IEEE,2011: 1016-1020.
[3] LAUBY M G,BIAN J J,SLONE A D. State of bulk power system reliability[C]//IEEE Power and Energy Society General Meeting. Vancouver,Canada:IEEE,2013: 1016-1020.
[4] RAHMAN F A,VARUTTAMASENI A,KINTNER-MEYER M,et al. Application of fault tree analysis for customer reliability assessment of a distribution power system[J]. Reliability Engineering & System Safety,111(3):76-85.
[5] Common specifications for high-voltage switchgear and controlgear standards:IEC 60694—2002[S].2002.
[6] PONIECKI W. Reliability of high voltage circuit-breakers used in power supply systems[J]. Reliability Engineering & System Safety, 1996, 72(10): 289-293.
[7] SATO Y T, TAKAHASHI K,OTSUKA T,et al. Improvement of lifetime estimation of aged HV switchgear based on the consideration of applied technologies, design and conditions in service[C]//CIGRE Conference. Auckland, NewZealand:CIGRE,2013:16-17.
[8] NAKADA TWY, TAKAHASHI K, IWABUCHI K, et al. Survey and Research on Deterioration of 300 and 550 kV GCB[C]//CIGRE Conference Auckland,NewZealand: CIGRE,2013:1-5.
[9] RUNDE M. Reliability surveys of high voltage equipment[R]. Auckland,NewZealand: CIGRE,2013:1-33.
[10] SMEETS R. SC A3: The impact of the application of vacuum switchgear at transmission voltages[R]. Auckland,Newzealand:CIGRE,2013:1-34.
[11] 石 飞. 真空断路器机械可靠性研究[D]. 沈阳:沈阳工业大学, 2005.
SHI Fei. Mechanical reliability research of vacuum circuit breaker[D]. Shenyang: Shenyang University of Technology, 2015.
[12] 胡 亮. 关于真空断路器可靠性标志的讨论[J]. 高压电器, 2001,37(2):5-8.
HU Liang. Discussion on the reliability criterion of vacuum circuit breaker[J]. High Voltage Apparatus,2001,37(2):5-8.
[13] 高 鹏. 真空断路器的可靠性研究[D]. 大连:大连理工大学, 2013.
GAO Peng. Research on the reliability of vacuum circuit breaker[D]. Dalian:Dalian Univerisity of Technology,2013.
[14] 石 飞, 林 莘, 徐建源, 等. 真空断路器中关键零件机械可靠性计算与分析[J]. 高压电器, 2005, 41(1):32-35.
SHI Fei, LIN Xin, XU Jianyuan. Mechanical reliability calculation and analysis for key mechanical component in vacuum circuit break[J]. High Voltage Apparatus, 2005, 41(1):32-35.
[15] 黄述安, 宫小健. 真空断路器机械可靠性研究[J]. 中国高新技术企业, 2013, (35):1-2.
HUANG Shu’an GONG Xiaojian. Research on mechanical reliability of vacuum circuit breaker[J]. China High Technology Enterprises, 2013, (35):1-2.
[16] 黄述安, 宫小健. 真空断路器弹簧操动机构优化设计与可靠性分析[J]. 高压电器, 2005, 41(3):166-169.
HUANG Shu’an GONG Xiaojian. Optimal design and reliablity analysis of the spring actuator for vacuum circuit breaker[J]. High Voltage Apparatus,2005,41(3):166-169.
[17] 王蒲全. 提高真空断路器机械可靠性的方法[J]. 高压电器, 2001,37(5):52.
WANG Puquan. Methods to improve the mechanical reliability of vacuum circuit breakers[J] High Voltage Apparatus, 2001,37(5):52.
[18] MCPHERSON J W. Reliability physics and engineering[M]. New York:Springer,2013: 20-50.
[19] EARLES D R, EDDINS M F. Reliability physics (the physics of failure)[C]//First Symposium on the Physics of Failure in Electronics.[s.l.]:[s.n.],1962:179-193.
[20] MESSENGER C G. A review of the electronic reliability design handbook[C]//Annual Reliability & Maintainability Symposium.[S.l.]:[s.n.],1982:297-302.
[21] 邓增杰, 周敬恩. 工程材料的断裂与疲劳[M]. 北京: 机械工业出版社,1995: 2-10.
DENG Zengjie,ZHOU Jing’en. Fracture and fatigue of engineering meterial[M]. Beijing:China Machine Press,1995: 2-10.
[22] 郑修麟, 王 泓, 鄢君辉,等. 材料疲劳理论与工程应用[M]. 北京: 科学出版社, 2013: 261-274.
ZHENG Xiulin,WANG Hong,YAN Junhui,et al. Meterial fatigue theory and engineering Appalication[M]. Beijing:Science Press,2013: 261-274.
[23] DULLNI E, FINK H, ABB C R, et al. A Vacuum Circuit Breaker with Permanent Magnetic Actuator and Electronic Control[J]. Proc Cired,1999.
[24] DULLNI E. A vacuum circuit-breaker with permanent magnetic actuator for frequent operations[C]//18th ISDEIV Conference. Eindhoven,Netherlands:ISDEIV,1998:688-691.

备注/Memo

备注/Memo:
收稿日期:2019-11-10; 修回日期:2020-01-11 基金项目:陕西省重点研发计划项目(2019ZDLGY18-04);国网宁夏电力有限公司科技项目(5229DK160001N)。 Project Supported by Key Research and Development Program of Shaanxi(2019ZDLGY18-04), State Grid Ningxia Electric Power 陈鹤冲(1994—),男,硕士研究生,研究方向为智能高压电器,大容量真空断路器的选相投切。Project(5229DK160001N).艾绍贵(1960—),男,本科,教授级高工,长期从事电力系统故障限流、串联补偿、快速断路器等高电压技术及输变电设备技术的研究工作。
更新日期/Last Update: 2020-07-25