[1]黄祥,高国强,吴广宁.弓网离线对牵引传动系统的影响[J].高压电器,2019,55(04):102-107.[doi:10.13296/j.1001-1609.hva.2019.04.015]
 HUNG Xiang,GAO Guoqiang,WU Guangning.Influence of Pantograph?catenary Disconnection on Traction System[J].High Voltage Apparatus,2019,55(04):102-107.[doi:10.13296/j.1001-1609.hva.2019.04.015]
点击复制

弓网离线对牵引传动系统的影响()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年04期
页码:
102-107
栏目:
研究与分析
出版日期:
2019-04-15

文章信息/Info

Title:
Influence of Pantograph?catenary Disconnection on Traction System
文章编号:
0102-0107
作者:
黄祥12 高国强1 吴广宁1
1. 西南交通大学电气工程学院,成都610031;2. 国网内江供电公司,四川内江641100
Author(s):
HUNG Xiang12GAO Guoqiang1WU Guangning1
1. School of Electrical Engineering,Southwest Jiaotong University,Chengdu 610031,China;2. State Grid Neijiang Power Supply Company,Sichuan Neijiang 641100,China
关键词:
弓网离线电弧牵引变流器离线时间过电压
Keywords:
pantograph?catenary disconnectionarctraction converterdisconnection timeovervoltage
DOI:
10.13296/j.1001-1609.hva.2019.04.015
摘要:
离线时间长短严重影响动车组受流质量,目前离线时间的划分主要根据运行管理经验,尚无理论分 析。基于现场测试数据和MATLAB仿真软件,建立了包含弓网离线电弧和列车牵引变流器的仿真分析模 型,分析了弓网离线时的过电压与谐波,以及离线对牵引变流器直流侧电压的影响。结果表明:弓网离线和 恢复过程均有约1.3倍的过电压产生,并伴随有大量的谐波反馈到接触网上;牵引变流器直流侧压降速度随 列车行驶速度的增加而呈指数增大,250 km/h以上行驶速度时1 000 V压降所需时间已经下降到100 ms以内; 相同离线时间下,列车行驶速度愈大离线恢复时直流侧电压冲击和震荡愈大。上述分析表明,离线时间的划 分应考虑列车行驶速度的影响,越高时速下,离线时间应作越严格的限制,以保证列车良好的受流质量。
Abstract:
Time length of pantograph?catenary disconnection has a great influence on current?receiving quality of high?speed railway,currently the disconnection time is divided mainly according to the operation and management experience,there is no theoretical analysis. Based on the field test data and MATLAB simulation software,this pa? per establishes a simulation model including pantograph?catenary disconnection arc and traction converter,and ana? lyzes the overvoltage of pantograph?catenary disconnection arc and the impact of pantograph?catenary disconnection on DC?link voltage of traction converter. The results show that both pantograph?catenary disconnection and recovery process have about 1.3 times overvoltage and with a lot of harmonic feedback to catenary;the DC?link voltage drop speed of traction converter increases exponentially with the increase of train speed,the voltage drop time of 1 000 V has been reduced to less than 100 ms when traveling speed above 250 km/h;under the same disconnection time,the greater the train speed,the greater the DC?link voltage surge and shock during the pantograph?catenary recovery. Above conclusions shows that the division of disconnection time should consider the influence of train speed,the higher the speed,the disconnection time should be more strictly limit,to ensure the current?receiving quality of train.

参考文献/References:

[1] LEE H. 韩国交流电气铁路系统的故障分析[J]. 电力系统 研究,2006,76(5):317?326. LEE H. Fault analysis of Korean AC electric railway system [J]. Electric Power Systems Research,2006,76(5):317?326.
[2] 吴积钦. 受电弓和接触网系统[M]. 成都:西南交通大学出 版社,2010. WU Jiqin. The pantograph and catenary system[M]. Cheng? du: Southwest Jiaotong University Press,2010.
[3] LIU R. Simulation of dynamic current collection between pantograph and catenary of elastic catenary suspension system[C]//1st International Workshop on High?Speed and Intercity Railways. Berlin:Springer,2012:489?494.
[4] 邓学寿. CRH2型200 km/h动车组牵引传动系统[J]. 机车 电传动,2008(4):1?7. DENG Xueshou. Traction drive system of 200 km/h CRH2 EMUs[J].JournalofLocomotiveElectricDrive,2008(4):1?7.
[5] MIDYA S,BORMANN D,SCHUTTE T,et al. Pantograph arcing in electrified railways?mechanism and influence of various parameters?Part II: With AC traction power supply [J]. IEEE Transactions on Power Delivery,2009,24(4):1940? 1950.
[6] LEE K,JAHNS T M,BERKOPEC W E,et al. Closed?form analysis of adjustable?speed drive performance under input? voltage unbalance and sag conditions[J]. IEEE Transactions on Industry Applications,2004,1(3):469 ? 475.
[7] 方鸿波,于萧寒,李芳芳. 对受电弓离线产生过电压的分 析[J]. 铁道技术监督,2009,37(1):38?39. FANG Hongbo YU Xiaohan,LI Fangfang. Analysis of the pantograph offline overvoltage[J]. Journal of Railway Tech? nical Supervision,2009,37(1) : 38?39.
[8] 高国强. 高速列车运行状态暂态过电压机理与抑制方法 的研究[D]. 成都:西南交通大学,2011. GAO Guoqiang. Research of running mechanism and sup? pression method of transient overvoltage on high?speed train [D]. Chengdu:Southwest Jiaotong University,2011.
[9] 王波. 弓网电弧对车载变压器的影响研究[D]. 成都:西 南交通大学,2012. WANG Bo. Study on the influence of pantograph arcing on vehicle transformer[D]. Chengdu:Southwest Jiaotong Uni? versity,2012.
[10] 王赛,杨中平,林飞. 弓网离线对高速列车牵引电机 输出转矩的影响研究[C]// 第七届中国高校电力电子与电 力传动学术年会论文集. 上海:上海交通大学,2013: 198?205. WANG Sai,YANG Zhongpin,LIN Fei. Study of pantograph offline’s influence on the motor output torque of high ? speed train traction[C]//7th China Conference on Power Electronics and Power Transmission of Colleges and Uni? versities. Shanghai:Shanghai Jiaotong University,2013: 198?205.
[11] 孙大南,刘志刚,林文立,等. 地铁牵引变流器直流侧振 荡抑制策略研究[J]. 铁道学报,2011,33(8):52?57. SUN Danan,LIU Zhigang,LIN Wenli,et al. Research on DC?link oscillation suppression strategy in metro traction Converter[J]. Journal of Railway,2011,33(8) : 52?57.
[12] 李小伟. 弓网离线电磁干扰实验与分析[J]. 电子测试, 2013(7):49?50. LI Xiaowei. Experiment and analysis on electromagnetic interference of pantograph offline[J]. Journal of Electronic Testing,2013(7): 49?50.
[13] 唐正明,章三妹,朱峰. 动车组数字设备的弓网电弧 电磁干扰分析[J]. 电子测量与仪器学报,2014,28(9): 980?984. TANG Zhengming,ZHANG Sanmei,ZHU Feng. Analysis of electromagnetic interference on EMUs digital equipment caused by pantograph?catenary arc[J]. Journal of Electronic Measurement and Instrument,2014,28(9): 980?984.
[14] 李希炜,朱峰. 武广高速铁路轨旁电磁干扰实测及分 析[J]. 铁道标准设计,2014,58(9): 121?124. LI Xihui,ZHU Feng. Measurement and analysis of the electromagnetic interference beside the wuhan?guangzhou high?speed rail[J]. Railway Standard Design,2014,58(9): 121?124.
[15] CASSIE A M. Arc rupture and circuit serverity[C]//Confer? ence on A New Theory. Paris,France:CIGRE,1939:102.
[16] MAYR O. Contribution to the theory of static and dynamic arcs[J]. Archiv Electrotech,1943,37(1):589?608.
[17] GUARDADO J L,MAXIMOV SG,MELGOZAE,et al. An improved arc model before current zero based on the com? bined mayr and cassie arc models[J]. IEEE Transactions on Power Delivery,2005,20(1): 138?142.
[18] 王万岗. 高速铁路弓网电弧动态特性研究[D]. 成都:西南 交通大学,2013. WANG Wangang. Study on dynamic characteristic for high? speed railway pantogragh arcing[D]. Chengdu:Southwest Ji? aotong University,2013.
[19] 冯晓云. 电力牵引交流传动及其控制系统[M]. 成都:西 南交通大学出版社,2009. FENG Xiaoyun. Electric traction ac drive and control system [M]. Chengdu:Southwest Jiaotong University Press,2009.
[20] 郑琼林. 电力电子技术对电牵引传动系统发展的影响 [J]. 电力电子,2003(5):9?14. ZHENG Qionglin. Electronic technology influence on the development of the electric traction drive system[J]. Power Electronics,2003(5):9?14.
[21] 李群湛,贺建闽. 牵引供电系统分析[M]. 成都:西南交通 大学出版社,2007. LI Qunzhan,HE Jianmin. Analysis of traction power supply system[M]. Chengdu:Southwest Jiaotong University Press, 2007.

备注/Memo

备注/Memo:
收稿日期:2018?08?03; 修回日期:2018?10?08 基金项目:国家973计划(2011CB11105-4);国家自然科学基金(U1234202,U1134205,51107104)。 Project Supported by National Program on Key Basic Research Project(973 Program)(2011CB11105-4),National Natural Science Foundation of China(U1234202, U1134205,51107104). 黄祥(1989—),男,硕士研究生,研究方向为电气化铁道。 高国强(1981—),男,博士,副教授,硕士生导师,主要从 事高速动车组高压系统和设备电接触的研究工作。 吴广宁(1969—),男,博士,教授,博导,主要从事高电压 与绝缘技术相关教学与科研工作。 页码:107+116
更新日期/Last Update: 2019-04-16