[1]张施令,彭宗仁.高压换流变阀侧SF6气体套管外绝缘结构设计[J].高压电器,2019,55(04):117-124.[doi:10.13296/j.1001-1609.hva.2019.04.017]
 ZHANG Shiling,PENG Zongren.Design of SF6 Gas Bushing External Insulation Structure on High Voltage Converter Transformer Valve Side[J].High Voltage Apparatus,2019,55(04):117-124.[doi:10.13296/j.1001-1609.hva.2019.04.017]
点击复制

高压换流变阀侧SF6气体套管外绝缘结构设计()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年04期
页码:
117-124
栏目:
研究与分析
出版日期:
2019-04-15

文章信息/Info

Title:
Design of SF6 Gas Bushing External Insulation Structure on High Voltage Converter Transformer Valve Side
文章编号:
0117-0124
作者:
张施令1 彭宗仁2
1. 国网重庆市电力公司电力科学研究院,重庆401123;2. 西安交通大学电力设备电气绝缘国家 重点实验室,西安710049)
Author(s):
ZHANG Shiling1PENG Zongren2
1. State Grid Chongqing Electric Power Company Chongqing Electric Power Research Institute,Chongqing 401123,China;2. State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University,Xi’an 710049,China
关键词:
换流变阀侧套管外绝缘电场仿真结构设计
Keywords:
converter transformer valve side bushingexternal insulationelectric field simulationstructure design
DOI:
10.13296/j.1001-1609.hva.2019.04.017
摘要:
高压换流变阀侧套管是实现换流变压器与阀塔电气连接的重要设备,文中主要针对其外绝缘结构设 计进行讨论。研究内容主要分为3部分:讨论了换流变套管的实际运行环境和承受的电压、电流波形特征; 对换流变套管从空心复合绝缘子、套管均压罩、套管尾部3方面进行了设计和分析;建立了换流变套管三维 电场仿真计算模型,在实际运行环境下对其外绝缘性能进行计算分析。研究结果表明:套管主绝缘宜采用 电容式结构,且套管端部应装配苹果型均压罩;套管空心复合绝缘子的绝缘距离设计为7 490 mm,且尾部的 绝缘距离设计为3 110 mm;在实际运行环境下,端部均压罩最大场强出现在下端面,其值为2 386 V·mm-1。 文中的计算结果可为高压直流输电工程用换流变套管外绝缘设计提供一定的理论依据。
Abstract:
The converter transformer valve side bushing is an important equipment to realize the electrical connection between the converter transformer and the valve tower. The paper mainly discusses the design of the external insula? tion structure. The research content is divided into three parts,the actual operating environment and the characteris? tics of the voltage and current waveforms of converter transformer bushing are discussed. The design and analysis of the hollow composite insulator,corona ring and tail end of the bushing has been done. The three dimensional electric field simulation model has been set up to calculate and analyze the external insulation performance of the bushing. The results show that the main insulation of the bushing is fit to the capacitive structure,and the end of the bushing should be equipped with apple type corona ring. The insulation distance of the hollow composite insulator is designed as 7 490 mm. The insulation distance of the bushing tail is designed as 3110 mm. In the actual operating environment, the maximum field strength of the corona ring appears on the lower end surface,and the value is 2 386 V·mm-1. The re? sults of the paper can provide the theoretical basis for the design of the external insulation of the converter transform? er bushing used in the HVDC transmission project.

参考文献/References:

[1] 梁旭明,张平,常勇. 高压直流输电技术现状及发展 前景[J]. 电网技术,2012,36(4):1?9. LIANG Xuming,ZHANG Ping,CHANG Yong. Recent ad? vances in high?voltage direct?current power transmission and its developing potential[J]. Power System Technology, 2012,36(4): 1?9.
[2] 谢恒堃. 电气绝缘结构设计原理:下册[M]. 北京:机械工 业出版社,1992. XIE Hengkun. Electrical insulation design principles( Ⅱ) [M]. Beijing: Mechanical Industry Press,1992.
[3] 张学成,檀金华,牛万宇. ±1 100 kV直流输电工程换流 变压器阀侧套管的设计[J]. 高电压技术,2012,38(2): 393?399. ZHANG Xuecheng,TAN Jinhua,NIU Wanyu. Bushings de? sign of converter transformer’s valve side of UHVDC trans? mission project[J]. High Voltage Engineering,2012,38(2): 393?399.
[4] 陈忠,伍衡,黄和燕,等. ±800 kV直流穿墙套管耐压 试验发生外闪络原因分析及改进措施[J]. 高电压技术, 2011,37(9):2133?2139. CHEN Zhong,WU Heng,HUANG Heyan,et al. Cause analysis and improvement measure of ± 800 kV DC wall bushing occurring flashover during overvoltage withstand test[J]. High Voltage Engineering,2011,37(9): 2133?2139.
[5] ROKUNOHE T,KATO T,HIROSE M,et al. Development of insulation technology in compact SF6 gas?filled bushings: development of compact 800 kV SF6 gas?filled bushings[J]. Electrical Engineering in Japan,2010,171(1): 19?27.
[6] HOSOKAWA M,OKUMURA K,YAMAGIWA T,et al. Di? electric performance of improved gas insulated bushing for UHV GIS[J].IEEE Transactions on Power Delivery,1987,2 (2): 359?366.
[7] NIE D X,ZHANG H L,CHEN Z,et al. Optimization de? sign of grading ring and electrical field analysis of 800 kV UHVDC wall bushing[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2013,20(4):1361?1368.
[8] 李琼林,邹磊,等. 电力变压器谐波损耗仿真计算与实 验研究[J]. 电网技术,2013,37(12):3521?3527. LI Qionglin,ZOU Lei et al. Simulation calculation and ex? perimental research on harmonic losses in power transform? ers[J]. Power System Technology,2013,37(12): 3521 ? 3527.
[9] 张艳丽,刘洋,谢德馨,等. 一种考虑硅钢片旋转损耗 的三相变压器铁心损耗简化计算方法[J]. 中国电机工程 学报,2013,33(18):126?131. ZHANG Yanli,LIU Yang,XIE Dexin et al. A simplified calculation method of core losses considering rotating losses of electrical steel sheets in three?phase transformers [J]. Proceedings of the CSEE,2013,33(18): 126?131.
[10] 张良县,陈模生,彭宗仁,等. 高压换流变压器涡流损耗 计算与屏蔽分析[J]. 变压器,2013,50(3):15?21. ZHANG Liangxian,CHEN Mosheng,PENG Zongren,et al. Eddy current loss calculation and shield analysis of UHV converter transformer[J]. Transformer,2013,50(3): 15?21.
[11] 张卫纯,潘风明,张新根,等. 基于有限元法的电力变压 器金属结构件损耗分析[J]. 高压电器,2013,49(11):55? 61. ZHANG Weichun,PAN Fengming,ZHANG Xingen et al. Power loss analysis for structural parts in transformer based on finite element method[J]. High Voltage Apparatus,2013, 49(11):55?61.
[12] JACOB N D,MCDERMID W M,KORDI B. On?line moni? toring of partial discharges in a HVDC station environment [J]. IEEE Transactions on Magnetics,2012,19(3):925?935.
[13] 廖永力,李锐海,李小建,等. 典型空气间隙放电电压修 正的试验研究[J]. 中国电机工程学报,2012,32(28): 171?176. LIAO Yongli,LI Ruihai,LI Xiaojian,et al. Experimental research on typical air gap test voltage correction[J]. Proceedings of the CSEE,2012,32(28): 171?176.
[14] 徐建源,任春为,司秉娥,等. 40. 5 kV SF6充气式开关柜 三维电场分析[J]. 中国电机工程学报,2008,28(15): 136?140. XU Jianyuan,REN Chunwei,SI Binge,LIN Xin. Three dimensional electric field analysis of 40. 5 kV SF6 cubicle gas?insulated metal?enclosed switchgear [J]. Proceedings of the CSEE,2008,28(15): 136?140.
[15] TANG L,RAGHUVEER M R. Modelling of HVDC wall bushing flashover due to uneven wetting[J]. IEEE Transac? tions on Power Delivery,1999,14(1): 194?199.
[16] 党沙沙,许洋,张红松. Ansys12.0多物理耦合场有限 元分析入门到精通[M]. 北京:机械出版社,2010:254? 311. DANG Shasha,XU Yang,ZHANG Hongsong. Ansys12.0 finite element analysis of multiphysics coupling field from start to master[M]. Beijing: China Mechanical Press,2010: 254?311.
[17] MONGA S,GORUR R S. Design optimization of high volt? age bushing using electric field computations[J]. IEEE Trans? action on Dielectrics and Electrical Insulation,2006,13(6): 1217?1224.
[18] 张施令,彭宗仁,吴昊. ±800 kV换流变压器阀侧干式 套管的损耗分析[J]. 电网技术,2014,38(7):1758?1764. ZHANG Shiling,PENG Zongren,WU Hao. Analysis on power loss of valve?side RIP bushing for ±800 kV converter transformer[J]. Power System Technology,2014,38(7): 1758?1764.
[19] 王晓琪,吴春风. 1 000 kV GIS用套管的设计[J]. 高电压 技术,2008,34(9):1792?1796. WANG Xiaoqi,WU Chunfeng. Design of 1 000 kV GIS Bushing[J]. High Voltage Engineering,2008,34(9): 1792? 1796.
[20] GUGAT J L,KRANTZ M C,GERKEN M. Two?dimension? al versus three?dimensional finite?element method simula? tions of cantilever magnetoelectric sensors[J]. IEEE Trans? actions on Magnetics,2013,49(10):5287?5293.

备注/Memo

备注/Memo:
收稿日期:2018?08?21; 修回日期:2018?10?30 基金项目:重庆市自然科学基金(cstc2018jcyjAX0486)。 Project Supported by Chongqing Natural ScienceFoundation(cstc2018jcyjAX0486). 张施令(1986—),男,博士,高级工程师,主要从事高压 交/直流套管内外绝缘结构的设计和优化研究。 页码:124+132
更新日期/Last Update: 2019-04-16