[1]黄欢,郭洁,魏琪,等.杆塔冲击接地阻抗的有限元分析[J].高压电器,2019,55(04):217-222.[doi:10.13296/j.1001-1609.hva.2019.04.031]
 HUANG Huan,GUO Jie,WEI Qi,et al.Analysis of Tower Grounding Impedance Under Lightning Impulse by Finite Element Method[J].High Voltage Apparatus,2019,55(04):217-222.[doi:10.13296/j.1001-1609.hva.2019.04.031]
点击复制

杆塔冲击接地阻抗的有限元分析()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年04期
页码:
217-222
栏目:
研究与分析
出版日期:
2019-04-15

文章信息/Info

Title:
Analysis of Tower Grounding Impedance Under Lightning Impulse by Finite Element Method
文章编号:
0217-0222
作者:
黄欢1 郭洁2 魏琪2 何可夫2 刘行2 曹辉2 曾华荣1 罗洪1 马晓红1 虢韬3
1. 贵州电网有限责任公司电力科学研究院,贵阳550002;2. 西安交通大学电气工程学院,西安710049; 3. 贵州电网有限责任公司输电运行检修分公司,贵阳550002
Author(s):
HUANG Huan1GUO Jie2WEI Qi2HE Kefu2LIU Xing2CAO Hui2 ZENG Huarong1LUO Hong1MA Xiaohong1GUO Tao3
1. State Grid Guizhou Electric Power Corporation Research Institute,Guiyang 550002,China;2. School of Electrical Engineering, Xi’an Jiaotong University,Xi’an 710049,China;3. State Grid Guizhou Electric Power Corporation Transmission Operation Maintenance Branch,Guiyang 550002,China
关键词:
杆塔雷电流接地阻抗火花效应有限元法
Keywords:
towerlightning impulsegrounding impedancespark effectfinite element method
DOI:
10.13296/j.1001-1609.hva.2019.04.031
摘要:
电力系统的运行经验表明,大多数输电线路事故是由雷击输电线路或杆塔引起跳闸所致。经由输电 线路杆塔接地体流入大地的雷电流可达数十甚至上百千安,此时接地体周围土壤出现非线性火花放电现 象。为了提高输电线路耐雷水平,降低雷击故障率,考虑实际工况下土壤非线性火花放电效应进行杆塔接 地体参数计算对降低杆塔接地电阻的优化设计至关重要。文中基于电磁场理论,考虑土壤中的火花效应特 性,采用有限元数值计算方法建立了仿真模型,实现了高幅值冲击接地电流下接地体入地散流过程的模 拟。研究表明,该仿真模型与试验结果偏差小于10%;随着雷电流幅值的升高,冲击接地阻抗降低且有饱和 趋势;接地体阻抗随雷电流频率增大而增大。
Abstract:
Operating experiences of power system shows that most of accidents occurred at transmission lines were caused by lightning. The lightning current flowing through tower grounding electrode can be dozens or even hundreds thousands amps,which leads to non?linear spark effect in the soil around the electrode. In order to improve the light? ning prevention of transmission lines,it is necessary to take the non?linear spark effect into consideration in the simu? lation of tower grounding electrode,which is essential for the design. In this article,a new model based on Maxwell differential equations is built and finite element method is used to calculate the model by COMSOL?multiphysics software. Also,the non?linear sparking discharge phenomenon in soil is considered. With this model,a grounding electrode simulation with a high amplitude can be done. The results show that the deviation between the simulation model and the experiment result is less than 10%. With the increase of the amplitude of the lightning current,ground? ing impedance decline and will be saturated. The grounding impedance increases with the increase of the lightning frequency.

参考文献/References:

[1] 何金良,曾嵘,电力系统接地技术[M]. 北京:科学出版 社,2007. HE Jinliang,ZENG Rong. Grounding technology of power system[M]. Beijing: Science Press,2007.
[2] 关根志. 高电压工程基础[M]. 北京:中国电力出版社, 2003. GUAN Genzhi. High voltage engineering fundamental[M]. Beijing: China Electric Power Press,2003.
[3] 谢云云,薛禹胜,王昊昊,等. 电网雷击故障概率的时空 在线预警[J]. 电力系统自动化,2013,37(17):44?51. XIE Yunyun,XUE Yusheng,WANG Haohao,et al. Space? time early‘warning of power grid fault probability by light? ning[J]. Automation of Electric Power Systems,2013,37 (17): 44?51.
[4] 向东. 降低贵州南中牵110 kV输电线路杆塔接地电阻 的方法研究[D]. 重庆:重庆大学,2004. XIANG Dong. Study on the method of reducing the grounding resistance of 110 kV transmission line tower insouth guizhou[D]. Chongqing:Chongqing University,2004.
[5] 李超. 山岩地区利用杆塔基础降低杆塔接地电阻的方 法研究[D]. 长沙:长沙理工大学,2008. LI Chao. Study on the method of reducing grounding resis? tance of tower by using tower foundation in mountainous ar? ea[D]. Changsha:Changsha University of Science & Tech? nology,2008.
[6] 邓长征,周文俊,魏绍东,等. 电感效应与火花效应对接 地体及其周围土壤雷电冲击特性的影响分析[J]. 高电压 技术,2015,41(1):56?62. DENG Changzheng,ZHOU Wenjun,WEI Shaodong,et al. Influence analysis of inductance effect and spark effect on lightning impulse characteristics of grounding conductors and its ambient soil[J]. High Voltage Engineering,2015, 41(1): 56?62.
[7] 程杨. 杆塔接地装置的仿真计算与测量研究[D]. 武汉: 华中科技大学,2012. CHENG Yang. Simulation and measurement of tower grounding device[D]. Wuhan:Huazhong University of Sci? ence and Technology,2012.
[8] HEIMBACH M,GRCEV L D. Grounding system analysisin transients program applying electromagnetic filedapproach [J]. IEEE Transactions on Power Delivery,1997,12(1): 186?193.
[9] GRCEV L D. Comeputer analysis of transient voltages in large grounding systems[J]. IEEE Transaction on Power De? livery,1996,11(2):815?823.
[10] NEKHOUL B,GUERIN C,LABIE P,et al. A finite ele? mentmethod for calculating the electromagnetic fieldsgener? ated by substation grounding systems[J]. IEEE Transactions on Magnetics,1995,31(3): 2150?2153.
[11] HABJANIC A,TRLEP M. The simulation of the soil ioniza? tion phenomenon around the grounding system by the finite element method[J]. IEEE Transactions on Magnetic,2006, 42(4): 867?870.
[12] GERI A,VECA G M,GARBAGNATI E,et al. Non?lin? ear behaviour of ground electrodes under lightning surge currents: computer modelling and comparison with experi? mental results[J]. IEEE Transactions on Magnetic,1992, 28(2):1442?1445
[13] 杨琳,吴广宁,曹晓斌. 变电站接地网暂态建模方法 [J]. 电网技术,2012,36(5):161?165. YANG Lin,WU Guangning,CAO Xiaobin. A transient mod? eling approach of substation grounding grid[J]. Power Sys? tem Technology,2012,36(5): 161?165.
[14] TANABE K,Novel method for analyzing dynamic behavior of grounding systems based on the finite?difference time? domain method[J]. IEEE Power Engineering Reviwe,2001, 21(9):55?57.
[15] 李景丽,袁涛,杨庆,等. 考虑土壤非线性的接地网 有限元分析[J]. 高电压技术,2011,37(1):249?256. LI Jingli,YUAN Tao,YANG Qing,et al. Analysis of ground? ing grid by finite element method in consideration of soil non? linear characteristics[J]. High Voltage Engineering,2011,37 (1):249?256.
[16] 齐磊,崔翔,李慧奇. 变电站接地网的频域有限元方 法[J]. 中国电机工程学报,2007,27(6):62?66. QI Lei,CUI Xiang,LI Huiqi. Finite element modeling of the substation grounding grids in frequency domain[J]. Pro? ceedings of the CSEE,2007,27(6): 62?66.
[17] 甘艳,阮江军,陈允平,等. 考虑自身电阻率的地网接 地性能分析计算[J]. 高电压技术,2002,28(10):13?15. GAN Yan,RUAN Jiangjun,CHEN Yunping,et al. Calcu? lation of performance of grounding grid under the consider? ation of the resistivity of grounding[J]. High Voltage Engi? neering,2002,28(10): 13?15.
[18] 冯慈璋,马西奎. 工程电磁场导论[M]. 北京:高等教育出 版社,2000. FENG Cizhang,MA Xikui. Introduction of engineering elec? tro?magneticfields[M].Beijing:HigherEducationPress,2000.
[19] VISACRO S,SOARES A,HEM: A model for simulation of lightning ? related engineering problems[J]. IEEE Transac? tions on Power Delivery,2005,20(2):1026?1028.
[20] 朱时阳,袁涛,朱彬. 分层土壤中接地装置冲击散流特 性的有限元分析模型[J]. 电网技术,2014,38(8):2304?2309. ZHU Shiyang,YUAN Tao,ZHU Bin. Finite element model of impulse dispersing characteristics of grounding equip? ment in layered soil[J]. Power System Technology,2014,38 (8):2304?2309.
[21] 司马文霞,李晓丽,袁涛. 考虑土壤非线性特性的接地 网冲击特性分析方法[J]. 中国电机工程学报,2009,29 (16):127?132. SIMA Wenxia,LI Xiaoli,YUAN Tao. Analysis of grounding grid impulse characteristics in frequency domain in consid? eration of soil non?linear characteristic[J]. Proceedings of the CSEE,2009,29(16): 127?132.
[22] ZENG R,GONG X,HE J,et al. Lightning impulse perfor? mances of grounding grids for substations considering soil ionization[J]. IEEE Transactions on Power Delivery,2008, 23(2):667?675.

备注/Memo

备注/Memo:
收稿日期:2018?08?17; 修回日期:2018?10?30; 黄欢(1980—),女,工程师,硕士,主要从事电力系统 过电压与绝缘配合技术及电力系统接地技术研究。
更新日期/Last Update: 2019-04-16