[1]李 欣,李若琼.基于ICPT的非接触式牵引供电系统研究综述[J].高压电器,2019,55(07):1-9.[doi:10.13296/j.1001-1609.hva.2019.07.001]
 LI Xin,LI Ruoqiong.Review of Contactless Traction Power Supply System Based on ICPT[J].High Voltage Apparatus,2019,55(07):1-9.[doi:10.13296/j.1001-1609.hva.2019.07.001]
点击复制

基于ICPT的非接触式牵引供电系统研究综述()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年07期
页码:
1-9
栏目:
研究与分析
出版日期:
2019-07-15

文章信息/Info

Title:
Review of Contactless Traction Power Supply System Based on ICPT
作者:
李 欣12 李若琼3
(1. 兰州交通大学新能源与动力工程学院, 兰州 730070; 2. 兰州交通大学甘肃省轨道交通电气自动化工程实验室, 兰州 730070; 3. 兰州交通大学自动化与电气工程学院, 兰州 730070)
Author(s):
LI Xin12 LI Ruoqiong3
(1. School of New Energy & Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; 2. Rail Transit Electrical Automation Engineering Laboratory of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China; 3. School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; )
关键词:
轨道交通 牵引供电 非接触 感应耦合电能传输(ICPT)
Keywords:
rail transportation traction power supply contactless inductively coupled power transfer(ICPT)
DOI:
10.13296/j.1001-1609.hva.2019.07.001
摘要:
基于感应耦合电能传输(inductively coupled power transfer,ICPT)的非接触式牵引供电系统可以非接触供电方式为列车提供实时牵引电能,是轨道交通领域未来新型牵引供电技术的重要发展方向。首先,阐述了轨道交通实时受流非接触式牵引供电系统的结构和特点,回顾了ICPT技术和轨道交通非接触式牵引供电系统的国内外研究现状。然后,详细分析了基于ICPT的非接触式牵引供电主要关键技术研究成果和存在的问题。最后,结合研究现状对轨道交通非接触式牵引供电系统研究进行了展望。
Abstract:
Contactless traction power supply system based on inductively coupled power transfer (ICPT) can provide real-time traction power for the train in a contactless power supply mode. It is an important development direction of the new traction power supply technology in the field of rail transit. Firstly, the structure and characteristics of the real-time flow-receiving contactless traction power supply system for rail transit are expounded. The domestic and international research status of the ICPT technology and contactless traction power supply system for rail transit are reviewed. Then, the research results and existing problems of main key technologies of contactless traction power supply based on ICPT are analyzed in detail. Finally, the current situation of the research on the contactless traction power supply system for rail transit is prospected.

参考文献/References:

[1] 贾利民,秦 勇,王 莉. 轨道交通科技发展的方向与任务[J]. 北京交通大学学报,2016,40(4):25-31. JIA Limin,QIN Yong,WANG Li. Scientific and technological innovation of rail transportation trends and tasks[J]. Journal of Beijing Jiaotong University,2016,40(4):25-31.
[2] 文艳晖,杨 鑫,龙志强,等. 非接触供电技术及其在轨道交通上的应用[J]. 机车电传动,2016,10(6):14-20. WEN Yanhui,YANG Xin,LONG Zhiqiang,et al. Contactless power supply technology and its application in rail transport[J]. Electric Drive for Locomotives,2016,10(6):14-20.
[3] 麦瑞坤,李 勇,何正友,等. 无线电能传输技术及其在轨道交通中研究进展[J]. 西南交通大学学报,2016,51(3):446-460. MAI Ruikun,LI Yong,HE Zhengyou,et al. Wireless power transfer technology and its research progress in rail transportation[J]. Journal of Southwest Jiaotong University,2016,51(3):446-460.
[4] COVIC G A,BOYS J T. Modern trends in inductive power transfer for transportation applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2013,1(1):28-41.
[5] CHOI S Y,BEOM W G,SEOG Y J,et al. Advances in wireless power transfer systems for roadway-powered electric vehicles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2015,3(1):18-36.
[6] 杨庆新,张 献,李 阳. 无线电能传输技术及其应用[M]. 北京:机械工业出版社,2014:1-2. YANG Qingxin,ZHANG Xian,LI Yang. Wireless power transmission technology and its application[M]. Beijing: Mechanical Industry Press,2014:1-2.
[7] VILLA J L,SALLAN J,SANZ OSORIO J F, et al. High-misalignment tolerant compensation topology for ICPT systems[J]. IEEE Transactions on Industrial Electronics,2012,59(2): 945-951.
[8] SALLAN J,VILLA J L,LLOMBART A,et al. Optimal design of ICPT systems applied to electric vehicle battery charge[J]. IEEE Transactions on Industrial Electronics,2009,56(6): 2140-2149.
[9] 杨民生. 非接触式感应耦合电能传输的控制技术及其应用研究[D]. 长沙:湖南大学,2012:1-2. YANG Minsheng. Research on contactless inductively coupled power transfer technology and its application[D]. Changsha:Hunan University,2012:1-2.
[10] GREEN A W,BOYS J T. 10 kHz inductively coupled power transfer-concept and control[C]//Fifth International Conference on Power Electronics and Variable-Speed Drives. [S.l.]:[s.n.],1994:694-699.
[11] BOYS J T,HU A P,COVIC G A. Critical Q analysis of a current-fed resonant converter for ICPT applications[J]. IEEE Electronics Letters,2000,36(17):1440-1442.
[12] BOYS J T,COVIC G A,Elliott G A. Pick-up transformer for ICPT applications[J]. Electronics Letters,2002,38(21): 1276-1278.
[13] GREEN A W,BOYS J T. 10 kHz inductively coupled power transfer-concept and control[C]//5th International Conference on Power Eletronics and Variable-Speed Drives,1994: 694-699.
[14] SI P,HU A P,HSU J W,et al. Wirelss power supply for implantable biomedical device based on primary input votage regulation[C]//2nd IEEE Conference on Industrial Electronics and Applications.[S.l.]:IEEE,2007:235-239.
[15] 董 军. 非接触电能传输系统 AC—AC 变换器的研究[D]. 重庆:重庆大学,2009. DONG Jun. Research on AC—AC converter of contactless power transmission system[D]. Chongqing: Chongqing University,2009.
[16] CHEON S,KIM Y H,KANG S Y,et al. Circuit model based analysis of a wireless energy-transfersystem via coupled magnetic resonances[J]. IEEE Transactions on Industrial Electronics,2011,58(7):2906-2914.
[17] BHUTKAR R,SAPRE S. Wireless energy transfer using magnetic resonance[C]//Second International Conference on Computer and Electrical Engineering.[S.l.]:[s.l.],2009:512-515.
[18] LOW Z N,CHINGA R A,TSENG R,et al. Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system[J]. IEEE Transactions on Industrial Electronics,2009,56(5):1801-1812.
[19] FOTOPOULOU K,FLYNN B W. Wireless power transfer in looselycoupled links: coil misalignment model[J]. IEEE Transactions on Magnetics,2011,47(2):416-430.
[20] ZENKNER H,KHAN-NGERN W. High power density and high efficient wireless energy transfer by resonance coupling[C]//2010 International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology.[S.l.]:[s.n.],2010: 1281-1284.
[21] HASANZADEH S,VAEZ-ZADEH S. Enhancement of overall coupling coefficient and efficiency of contactless energy transmission systems[C]//2nd Power Electronics,Drive Systems and Technologies Conference(PEDSTC).[S.l.]:[s.n.],2011: 638-643.
[22] RAKHYANI A K,MIRABBASI S,CHIAO MU. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants[J]. IEEE Transactions on Biomedical Circuits and Systems,2011,5(1): 48-63.
[23] 孙 跃,卓 勇,苏玉刚,等. 非接触电能传输系统拾取机构方向性分析[J]. 重庆大学学报(自然科学版),2007,30(4):87-90. SUN Yue,ZHUO Yong,SU Yugang,et al. Direction analysis on contactless power transmission system[J]. Journal of Chongqing University(Natural Science Edition),2007,30(4):87-90.
[24] 孙 跃,夏晨阳,戴 欣,等. 感应耦合电能传输系统互感耦合参数的分析与优化[J]. 中国电机工程学报,2010,30(33):44-50. SUN Yue,XIA Chenyang,DAI Xin,et al. Analysis and optimization of mutual inductance for inductively coupled power transfer system[J]. Proceedings of the CSEE,2010,30(33):44-50.
[25] 戴 欣,孙 跃,苏玉刚,等. 感应电能传输系统参数辨识与恒流控制[J]. 重庆大学学报,2011,34(6):98-104. DAI Xin ,SUN Yue,SU Yugang,et al. Study on constant current control of inductive power transfer with parameter identification[J]. Journal of Chongqing University(Natural Science Edition),2011,34(6):98-104.
[26] 赵志斌,孙 跃,周诗杰,等. 非接触电能传输系统参数优化的改进遗传解法[J]. 西安交通大学学报,2012,46(2):106-112. ZHAO Zhibin,SUN Yue,ZHOU Shijie,et al. Improved genetic algorithm for parameter optimization in contactless power transfer system[J]. Journal of Xian Jiaotong University,2012,46(2):106-112.
[27] BOYS J T,COVIC G A. The inductive power transfer story at the university of auckland[J]. IEEE Circuits and Systems Magazine,2015,15(2): 6-27.
[28] 蔡 波,李鲲鹏. 现代有轨电车无接触网牵引供电方式研究[J]. 城市轨道交通研究,2015(1):72-77. CAI Bo,LI Kunpeng. On contactless traction power supply for modern trams[J]. Research on urban rail transportation,2015(1):72-77.
[29] CHOI S Y,BEOM W G,SEOG Y J,et al. Advances in wireless power transfer systems for roadway-powered electric vehicles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2015,3(1):18-36.
[30] LEE S H,KIM J H,LEE J H. Development of a 60 kHz,180 kW,over 85% efficiency inductive power transfer system for a tram[J]. Energies,2016,9(12): 1075.
[31] 易 云. 德国试验无高架接触线电车[J]. 现代城市轨道交通,2011(4):118. YI Yun. German test without overhead contact tram[J]. Modern Urban Rail Transportation,2011(4):118.
[32] 潘孟春,陈武刚,陈傈湘,等. 高速磁浮列车车用直线电机研究[J]. 机电工程技术,2005,34(1):32-34. PAN Mengchun,CHEN Wugang,CHEN Xiaoxiang,et al. Research on linear motors for high-speed maglev train vehicles[J] . Mechanical Engineering Technology,2005,34(1):32-34.
[33] 郭 亮,卢琴芬,叶云岳. 磁浮列车用直线发电机感应电动势的分析计算[J]. 电工技术学报,2005,20(11):1-5. GUO Liang,LU Qinfen,YE Yunyue. Analysis and calculation of the linear generator emf in maglev[J]. Transactions of China Electrotechnical Society,2005,20(11):1-5.
[34] 薛 琦. 高速磁浮列车无接触式受流系统的研究[D]. 成都:西南交通大学,2013:1-6. XUE Qi. Study on contactless flow receiving system of high-speed maglev train[D]. Chengdu:Southwest Jiaotong University,2013:1-6.
[35] ZHANG R,SHI L,DU Y,et al. A novel contactless transformer with trapezoidal windings cross section in IPT system for movable vehicle[C]//International Conference on Electrical Machines.[S.l.]:[s.n.],2017:1-4.
[36] JANG DU,DIAS J V,CHANG S H,et al. Analysis of inductive power transfer according to resistance loads and air gaps at 50 kHz frequency[J]. Journal of International Council on Electrical Engineering,2016,3(3):275-261.
[37] KIM J H,LEE B S,LEE J H,et al. Development of 1 MW inductive power transfer system for a high-speed train[J]. IEEE Transactions on Industrial Electronics,2015,62(10):6242-6250.
[38] LEE S B,AHN S Y,JANG I G. Simulation-based feasibility study on the wireless charging railway system with a ferriteless primary module[J]. IEEE Transactions on Vehicular Technology,2017,66(2):1004-1010.
[39] YAMAMOTO K,MARUYAMA T,KONDO K,et al. A method for designing a high-power contactless power transformer considering reactive power[J]. Electronics and Communications in Japan,2015,98(4):1-10.
[40] SHIMODE D,MURAI T,SAWADA T. Experimental verification for practical application of inductive power transfer system for railway[J]. Electrical Engineering in Japan,2017,198(2):59-70.
[41] SHIMODE D,MURAI T,SAWADA T. Adaptation of discrete-type cores for secondary coils of wireless power transfer system for railway[J]. Electrical Engineering in Japan,2017,201(2):49-57.
[42] 张 献,杨庆新,陈海燕,等. 电磁耦合谐振式无线电能传输系统的建模、设计与实验验证[J]. 中国电机工程学报,2012,32( 21):153-158. ZHANG Xian,YANG Qingxin,CHEN Haiyan,et al. Modeling and design and experimental verification of contactless power transmission systems via electromagnetic resonant coupling[J]. Proceedings of the CSEE,2012,32(21):153-158.
[43] 张 献,杨庆新,陈海燕,等. 电磁耦合谐振式传能系统的频率分裂特性研究[J]. 中国电机工程学报,2012,32(9) : 167-172. ZHANG Xian,YANG Qingxin,CHEN Haiyan,et al. Research on characteristics of frequency splitting in electromagnetic coupling resonant power transmission systems[J]. Proceedings of the CSEE,2012,32(9) : 167-172.
[44] 苑朝阳,张 献,杨庆新,等. 无线供电高铁列车非对称耦合机构[J]. 电工技术学报. 2017,32(18) : 18-25. YUAN Zhaoyang,ZHANG Xian,YANG Qingxin,et al. Asymmetric coupling mechanism of wireless power transmission system for high-speed train[J]. Transactions of China Electrotechnical Society. 2017,32(18) : 18-25.
[45] LI Y,MAI R K,YANG M K,et al. Cascaded multilevel inverter based IPT systems for high power applications[J]. Journal of Power Electronics,2015,15(6) : 1508-1516.
[46] LI Y,MAI R K,LIN T R,et al. A novel WPT system based on dual transmitters and dual receivers for high power applications: Analysis,design and implementation[J]. Energies,2017,10(2):174.
[47] 何正友,李 勇,麦瑞坤,等. 考虑阻感性负载IPT系统的动态补偿技术[J]. 西南交通大学学报,2014,49(4): 569-575. HE Zhengyou,LI Yong,MAI Ruikun,et al. Dynamic compensation strategy of inductive power transfer system with inductive-resistive load[J]. Journal of Southwest Jiaotong University,2014,49(4) : 569-575.
[48] 麦瑞坤,陆立文,李 勇,等. 一种采用最小电压与最大电流跟踪的IPT系统动态调谐方法[J]. 电工技术学报,2015,30(19) : 32-38. MAI Ruikun,LU Liwen,LI Yong,et al. Dynamic resonant compensation approach based on minimum voltage and maximum current tracking for IPT system[J]. Transactions of China Electrotechnical Society,2015,30(19) : 32-38.
[49] LI Y,MAI R K,LIN T R,et al. Design and implementation of a novel WPT system for railway applications[C]//2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer.[S.l.]:IEEE,2017:213-216.
[50] LI Y L,SUN Y,DAI X. Robust control for an uncertain LCL resonant ICPT system using LMI method[J]. Control Engineering Practice,2013,21(1) : 31-41.
[51] HUANG L M,LI Y L,HE Z Y,et al. Improved robust controller design for dynamic IPT system under mutual-inductance uncertainty[C]//IEEE PELS Workshop on Emerging Technologies: Wireless Power.[S.l.]:IEEE,2015:1-6.
[52] 张 颖. 高速磁浮列车无接触供电中的电能耦合优化技术研究[D]. 北京:中国科学院电工研究所,2012 : 65-66. ZHANG Ying. Electric energy coupling optimization technology for contactless power supply of high-speed maglev trains[D]. Beijing: Institute of Electrical Engineering,Chinese Academy of Sciences,2012 : 65-66.
[53] ALDHAHERS,LUK P C,WHIDBORNE J F. Tuning class E inverters applied in inductive linksusing saturable reactors[J]. IEEE Transactions on Power Electronics,2014,29( 6) : 2969-2978.
[54] KISSIN M L G,BOYS J T,COVIC G. Interphase mutual inductance in polyphase inductive power transfer systems[J]. IEEE Transactions on Industrial Electronics,2009,56(7) : 2393-2400.
[55] HAO H,COVIC G,BOYS J T. A parallel topology for inductive power transfer power supplies[J]. IEEE Transactions on Power Electronics,2014,29 (3) :1140-1151.
[56] RAHNAMAEE H R,MADAWALA U K,THRIMAWITHANA D J. A multi-level converter for high power-high frequency WPT systems[C]//5th International Symposium on Power Electronics for Distributed Generation Systems(PEDG). [S.l.]: IEEE,2014: 1-6.
[57] 刘  闯,田孝铜,曹亚华,等. 基于随机牛顿法(SNM)的级联多电平逆变器特定谐波消除[J]. 电力系统保护与控制,2017,45(5) : 96-102. LIU Chuang,TIAN Xiaotong,CAO Yahua,et al. Selected harmonic elimination in cascaded multi-level voltage inverters based on the stochastic Newton method(SNM)[J]. Power System Protection and Control,2017,45(5) : 96-102.
[58] 李 勇,麦瑞坤,马林森,等. 一种双初级线圈并绕的感应电能传输系统及其功率分配方法[J]. 中国电机工程学报,2015,35( 17) : 4454-4460. LI Yong,MAI Ruikun,MA Linsen,et al. Dual parallel wound primary coils based IPT systems and its power allocation technique[J]. Proceedings of the CSEE,2015,35(17) : 4454-4460.
[59] STAMATI T E,BAUER P. On-road charging of electric vehicles[C]//2013 IEEE Transportation Electrification Conference and Expo(ITEC). [S.l.]: IEEE,2013: 1-8.
[60] 田 勇. 基于分段导轨模式的电动车无线供电技术关键问题研究[D]. 重庆:重庆大学,2012:31-45. TIAN Yong. Research on key issues of sectional track-based wireless power supply technology for electric vehicles[D]. Chongqing: Chongqing University,2012:31-45.
[61] EAN K K,SONG K,SUKPRASERT P,et al. Twotransmitter wireless power transfer with LCL circuit for continuous power in dynamic charging[C]//IEEE PELS Workshop on Emerging Technologies:Wireless Power.[S.l.]:IEEE,2015:1-6.
[62] 西南交通大学. 一种机车无线供电系统的分段导轨切换方法:CN201410220383. 3[P]. 2014-09-03. Southwest Jiaotong University. Segmented rail switching method for locomotive wireless power supply system: CN2014 10220383. 3[P]. 2014-09-03.
[63] 苏玉刚,张 帅,徐 勇,等. 电动汽车无线供电系统电能发射线圈设计与切换控制[J]. 西南交通大学学报,2016,51(1):168-176. SU Yugang,ZHANG Shuai,XU Yong,et al. Design and switching control of power supply coils applied to ICPT-based electric vehicles[J]. Journal of Southwest Jiaotong University,2016,51(1):168-176.
[64] 刘玉昆. 无线电能传输系统功效特性与补偿网络关系研究[D]. 大连:大连理工大学,2014. LIU Yukun. Investigation of power-efficiency characteristics for wireless power transmission system with different compensation networks[D]. Dalian: Dalian University of Technology,2014.
[65] 夏晨阳,解光庆,林克章,等. 双LCL补偿ICPT系统双谐振点特性及最大输出功率研究[J]. 中国电机工程学报,2016,36(19):5200-5209. XIA Chenyang,XIE Guangqing,LIN Kezhang,et al. Study of dual resonance point characteristics and maximum output power of ICPT based on double LCL compensation[J]. Proceedings of the CSEE,2016,36(19):5200-5209.
[66] 夏晨阳,陈国平,任思源,等. 采用新型负载恒流供电复合谐振网络的无线电能传输系统[J]. 电力系统自动化,2017,41(2):46-52. XIA Chenyang,CHEN Guoping,REN Siyuan,et al. Wireless power transmission system using composite resonant network for constant-current power supply of load[J]. Automation of Electric Power System,2017,41(2):46-52.
[67] 戴 欣,孙 跃. 感应电能传输系统能量注入控制方法研究[J]. 电子科技大学学报,2011,40(1):69-72. DAI Xin,SUN Yue. Study on energy injection control method for inductiv power transfer system[J]. Journal of University of Electronic Science and Technology of China,2011,40(1):69-72.
[68] 董纪清,杨上苹,黄天祥,等. 用于磁耦合谐振式无线电能传输系统的新型恒流补偿网络[J]. 中国电机工程学报,2015,35(17):4468-4476. DONG Jiqing,YANG Shangping,HUANG Tianxiang,et al. Novel constant current compensation network for magnetically-coupled resonant wireless power transfer system[J]. Proceedings of the CSEE,2015,35(17):4468-4476.
[69] 余 奎.LCL 型感应耦合电能传输系统的特性研究[D]. 重庆:重庆大学,2012. YU Kui. Study of characteristics of LCL-type inductive coupled power transfer system[D]. Chongqing: Chongqing University,2012.
[70] 张 炯. 无接触供电变流控制及系统设计关键技术研究[D]. 南京:南京航空航天大学,2015:37-44. ZHANG Jiong. Energy control and design technology of inductive power transmission[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2015:37-44.
[71] 李砚玲. 基于μ综合的ICPT系统鲁棒控制研究[D]. 重庆:重庆大学,2012:41-55. LI Yanling. Study on robust control for ICPT system based on μ-synthesis[D]. Chongqing: Chongqing University,2012:41-55.
[72] LI H C,WANG K P,HUANG L,et al. Dynamic modeling based on coupled modes for wireless power transfer systems[J]. IEEE Transactions on Power Electronics,2015,30(11):6245-6253.
[73] 戴 欣,余 奎,孙 跃. CLC 谐振型感应电能传输系统的H∞控制[J]. 中国电机工程学报,2010,30(30):47-54. DAI Xin,YU Kui,SUN Yue. Study on H∞ control method for CLC resonant inductive power transfer system[J]. Proceedings of the CSEE,2010,30(30) :47-54.
[74] DAI X,ZOU Y,SUN Y. Uncertainty modeling and robust control for LCL resonant inductive power transfer system[J]. Journal of Power Electronics,2013,13(5) : 814-828.
[75] XIA C Y,WANG W,CHEN G P,et al. Robust control for the relay ICPT system under external disturbance and parametric uncertainty[J]. IEEE Transactions on Control Systems Technology,2016,25(6):2168-2175.

备注/Memo

备注/Memo:
李 欣(1978—),男,博士,副教授,研究方向为电力电子技术、交通信息集成融合与智能控制。收稿日期:2018-11-06; 修回日期:2019-01-07 基金项目:国家自然科学基金资助项目(51767015);甘肃省科技计划资助(甘肃省自然科学基金资助项目)(18JR3RA117);大型电气传动系统与装备技术国家重点实验室开放基金资助项目(SKLLDJ022016015)。 Project Supported by National Natural Science Foundation of China(51767015),Gansu Provincial Natural Science Foundation of China(Gansu Provincial Science and Technology Plan)(18JR3RA117),Openness Foundation of State Key Laboratory of Large Electric Drive System and Equipment Technology( SKLLDJ022016015).
更新日期/Last Update: 2019-07-15