[1]秦金飞,朱 琦,周 玮,等.基于经验小波与小波变换的GIS局部放电信号去噪方法研究[J].高压电器,2019,55(07):70-77,86.[doi:10.13296/j.1001-1609.hva.2019.07.011]
 QIN Jinfei,ZHU Qi,ZHOU Wei,et al.Research on Denoising Method of GIS Partial Discharge Signal Based on Improved Empirical Wavelet and Wavelet Transform[J].High Voltage Apparatus,2019,55(07):70-77,86.[doi:10.13296/j.1001-1609.hva.2019.07.011]
点击复制

基于经验小波与小波变换的GIS局部放电信号去噪方法研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年07期
页码:
70-77,86
栏目:
研究与分析
出版日期:
2019-07-15

文章信息/Info

Title:
Research on Denoising Method of GIS Partial Discharge Signal Based on Improved Empirical Wavelet and Wavelet Transform
作者:
秦金飞1 朱 琦1 周 玮2 张 军2 薛 丽3 冯晓栋4
(1. 国网安徽省电力有限公司电力科学研究院, 合肥 230022; 2. 中国电力科学研究院有限公司, 武汉 430074; 3. 国网江苏省电力公司靖江供电分公司, 江苏 靖江 214500; 4. 武汉大学电子信息学院, 武汉 430072)
Author(s):
QIN Jinfei1 ZHU Qi1 ZHOU Wei2 ZHANG Jun2 XUE Li3 FENG Xiaodong4
(1. State Grid Anhui Electric Power Research Instritute, Hefei 230022, China; 2. China Electric Power Research Institute, Wuhan 430074, China; 3. State Grid Jiangsu Electric Power Company Jingjiang Power Supply Company, Jiangsu Jingjiang 214500, China; 4. School of Electronic Information, Wuhan University, Wuhan 430072, China)
关键词:
经验小波 局部放电 小波变换 峭度值
Keywords:
EWT partial discharge wavelet transfer kurtosis value
DOI:
10.13296/j.1001-1609.hva.2019.07.011
摘要:
为解决气体绝缘组合电器(gas insulated switchgear,GIS)内部缺陷局部放电(partial discharge,PD)信号含有噪声的问题,搭建了模拟局部放电环境,采用超高频法(ultra-high frequency,UHF)采集缺陷PD信号。针对UHF PD信号具有周期性窄带噪声与白噪声的特点,提出了基于改进的经验小波(experience wavelet,EWT)与小波变换结合进行UHF PD信号的去噪研究。首先,含噪信号通过EWT预处理分解为多频率的模态函数,然后对模态函数进行小波去噪处理,将去噪后的模态函数按照峭度值进行划分,根据合适的阈值选取UHF PD信号的有效成分并重构信号,最后,通过构建UHF PD仿真信号并采用实测数据验证所提算法的有效性。仿真实验与实测去噪结果表明:文中所提改进去噪算法具有良好的噪声抑制能力,为GIS设备内部UHF PD信号去噪提供参考。
Abstract:
In order to solve the problem that the internal discharge (PD) signal of gas insulated switchgear (GIS) contains noise, this paper builds a simulated partial discharge environment, and using ultra-high frequency (UHF) to acquire the defective PD signal. In view of the characteristics of periodic narrow-band noise and white noise for UHF PD signals, a denoising study of UHF PD signals based on improved experience wavelet (EWT) and wavelet transform is proposed. Firstly,the EWT transform can be used to decompose the signal into multi-frequency modal functions, then the modal function is wavelet denoised, divide the denoised modal function according to the kurtosis value, and select UHF PD according to the appropriate threshold. The active component of the signal and reconstructs the signal. Finally, the UHF PD simulation signal is constructed and the measured data is used to verify the effectiveness of the proposed algorithm. The simulation experiment and the measured denoising results show that the improved denoising algorithm proposed in this paper has good noise suppression ability. This paper provides a reference for the denoising of UHF PD signals inside GIS equipment.

参考文献/References:

[1] 陈维荣, 宋永华, 孙锦鑫. 电力系统设备状态监测的概念及现状[J]. 电网技术, 2000, 24(11):12-17. CHEN Weirong, SONG Yonghua,SUN Jinxin. Concept and present situation of condition monitoring of power system equipment[J]. Power System Technology,2000,24(11):12-17.
[2] 高佳程, 田蕴卿, 朱永利, 等. 基于完全集合经验模态分解和排列熵的局部放电信号的小波包去噪方法[J]. 电力系统及其自动化学报,2018,30(3): 1-7. GAO Jiacheng,TIAN Wenqing,ZHU Yongli,et al. Wavelet package denoising method for partial discharge signals based on CEEMD and PE[J]. Proceedings of the Chinese Society of Universities for Electric Power System and Automation, 2018,30(3): 1-7.
[3] 张 波, 刘成国, 徐 忠, 等. 小波去噪对提高GIS超声局部放电信号识别率的研究[J]. 电气工程学报,2017,12(11): 41-45. ZHANG Bo,LIU Chengguo,XU Zhong,et. Research on improving the recognition rate of GIS ultrasonic discharge signal by wavelet denoising[J]. Journal of Electrical Engineering,2017,12(11): 41-45.
[4] 席 维, 白 璘, 武奇生. 基于经验小波变换和峭度值的滚动轴承故障检测方法[J]. 工业仪表与自动化装置,2018(6): 26-30. XI Wei, BAI Lin, WU Qisheng. A novel rolling bearing fault detection method based on empirical wavelet transform and kurtosis val[J]. Industrial Instrumentation & Automation,2018(6): 26-30.
[5] 邵 列. 局部放电检测系统中的信号去噪与模式识别的研究[D]. 西安:西安电子科技大学, 2009. SHAO Lie. Research of de-noise and pattern-recognition in partial discharge detection system[D]. Xi’an:Xi’an Xidian University,2009.
[6] 代荡荡, 王先培, 龙嘉川, 等. 基于改进Protrugram和小波变换的超高频局部放电信号去噪方法[J]. 高电压技术,2018,44(11): 3577-3586. DAI Dangdang,WANG Xianpei,LONG Jiachuan,et al. De-noising method of ultra-high frequency partial discharge signal based on improved protrugram and wavelet transform[J]. High Voltage Engineering, 2018,44(11): 3577-3586.
[7] 胡明宇, 王先培, 肖 伟, 等. 基于UHF的局部放电信号小波包去噪与模式识别研究[J]. 仪表技术与传感器,2016(7): 93-96. HU Mingyu,WANG Xianpei,XIAO Wei,et al. Wavelet packet de-noising and PNN pattern recognition for partial discharge based on UHF[J]. Instrument Technique and Sensor,2016(7): 93-96.
[8] 王永强, 张 斌, 李长元, 等. 基于改进DTCWT的GIS局部放电信号降噪方法的研究[J]. 高压电器,2018,54(3): 10-16. WANG Yongqing,ZHANG Bin,LI Changyuan,et al. Study on noise reduction method of GIS PD signal based on the improved DTCWT[J]. High Voltage Apparatus,2018,54(3): 10-16.
[9] 张艺还, 王旭红, 郭 良, 等. 基于归一化自相关函数与类小波软阈值法的GIS局放信号降噪方法研究[J]. 高压电器,2018,54(3): 17-24. ZHANG Yihuan,WANG Xuhong,GUO Liang,et al. Partial discharge detection for GIS based on normalized autocorrelation function and similar wavelet[J]. High Voltage Apparatus,2018,54(3): 17-24.
[10] 李蓝青, 赵 刚. 粒子群算法用于局部放电小波阈值去噪[J]. 电气自动化,2018,40(1): 112-115. LI Lanqing,ZHAO Gang. Application of particle swarm optimization to wavelet threshold de-noising for partial discharge[J]. Electrical Automation,2018,40(1): 112-115.
[11] 汪培培, 莫付江, 赵岗岗, 等. 基于小波和高阶PDE的电缆局部放电去噪研究[J]. 电测与仪表,2017,54(22): 6-10. WANG Peipei,MO Fujiang,ZHAO Ganggang,et al. Research on de-noising of cables partial discharge based on wavelet and high order PDE[J]. Electrical Measurement & Instrumentation. 2017,54(22): 6-10.
[12] ALTAY -, KALENDERLI -. Wavelet base selection for de-noising and extraction of partial discharge pulses in noisy environment[J]. IET Science, Measurement & Technology,2015,9(3): 276-284.
[13] 陈 刚, 刘志刚, 张巧革. 一种基于谱峭度的局部放电信号提取新方法[J]. 电力自动化设备,2013,33(8): 94-100. CHEN Gang,LIU Zhigang,ZHANG Qiaoge. Partial discharge signals extraction based on spectral kurtosis[J]. Journal of Power Automation Equipment,2013,33(8):94-100.
[14] 卓泽赢, 曹 茜, 李 青. 基于EWT-KELM方法的短期风电功率组合预测[J]. 电测与仪表,2019,56(2):89-95. ZHUO Zeying,CAO Xi,LI Qing. Wind power short-term combined forecasting based on EWT-KELM method[J]. Electrical Measurement & Instrumentation,2019,56(2):89-95.
[15] 韩 超. 基于经验小波变换的变压器内部故障电流与励磁涌流的识别研究[J]. 科学技术创新,2018(34): 28-30. HAN Chao. Identification of transformer internal fault current and magnetizing inrush based on empirical wavelet transform[J]. Journal of science and technology innovation,2018(34): 28-30.
[16] 段晨东, 张 荣. 基于改进经验小波变换的机车轴承故障诊断[J]. 中国机械工程,2019,30(6): 631-637. DUAN Chendong,ZHANG Rong. Locomotive bearing fault diagnosis using an improved empirical wavelet transform[J]. Chinese Journal of Mechanical Engineering 2019,30(6): 631-637.
[17] 陈海永, 余 力, 刘 辉, 等. 基于经验小波的太阳能电池缺陷图像融合[J]. 山东大学学报(工学版),2018,48(5): 24-31. CHEN Haiyong,YU Li,LIU Hui,et al. Solar cell defect images fusion based on empirical wavelet[J]. Journal of Shandong University (Engineering Edition), 2018,48(5): 24-31.
[18] 赵 磊, 朱永利, 高艳丰, 等. 基于变分模态分解和小波分析的变压器局部放电去噪研究[J]. 电测与仪表,2016,53(11): 13-18. ZHAO Lei,ZHU Yongli,GAO Yanfeng,et al. Research on denoising of transformer partial discharge based on variational mode decomposition and wavelet analysis[J]. Electrical Measurement & Instrumentation,2016,53(11): 13-18.
[19] 周力行. 变压器局部放电检测中的小波包去噪算法[J]. 高电压技术,2001,27(1): 19-21. ZHOU Lihang. Noise eliminating algorithm by wavelet packet in on-line HV transformer PD detection[J]. High Voltage Engineering,2001,27(1): 19-21.
[20] 邱鹏锋. 基于特高频检测的GIS局部放电类型识别研究[D]. 重庆:重庆大学, 2017. QIU Pengfeng, Research on partial discharge pattern recognition of GIS based on UHF[D]. Chongqing:Chongqing University 2017.
[21] LI N, ZHOU J, WANG Y, et al. Suppression of UHF partial discharge signals buried in white-noise interference based on block thresholding spatial correlation combinative de-noising method[J]. IET Generation, Transmission & Distribution,2012,6(5): 353-362.
[22] 马 强, 唐 阳. 基于PSCAD的电力电缆局部放电信号检测仿真研究[J]. 电工技术,2018(16): 60-61. MA Qinag,TANG Yang. Simulation research on PD signal detection of power cable based on PSCAD[J]. Electrical Technical Periodicals,2018(16): 60-61.
[23] TANG J, LIU F, ZHANG X, et al. Partial discharge recognition based on SF6 decomposition products and support vector machine[J]. IET Science, Measurement & Technology,2012,6(4):198.

备注/Memo

备注/Memo:
秦金飞(1989—),男,硕士,工程师,主要从事电力设备高压试验、状态检测等领域的研究。收稿日期:2019-05-02; 修回日期:2019-06-14 基金项目:国网安徽省电力有限科技项目资助。 Project Supported by Science and Technology Project of State Grid Anhui Province Power Limited Company.
更新日期/Last Update: 2019-07-15