[1]刘 芹,彭在兴,王 颂,等.基于随机森林算法的断路器分合闸线圈故障电流曲线识别[J].高压电器,2019,55(07):93-100.[doi:10.13296/j.1001-1609.hva.2019.07.014]
 LIU Qin,PENG Zaixing,WANG Song,et al.Fault Current Curves Identification of Circuit Breaker Opening/Closing Coil Based on Random Forest Algorithm[J].High Voltage Apparatus,2019,55(07):93-100.[doi:10.13296/j.1001-1609.hva.2019.07.014]
点击复制

基于随机森林算法的断路器分合闸线圈故障电流曲线识别()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年07期
页码:
93-100
栏目:
研究与分析
出版日期:
2019-07-15

文章信息/Info

Title:
Fault Current Curves Identification of Circuit Breaker Opening/Closing Coil Based on Random Forest Algorithm
作者:
刘 芹1 彭在兴1 王 颂1 易 林1 陈 曦2 褚飞航3 骆 挺3 梁梦婕3 羿 敏3 刘定新3
(1. 南方电网科学研究院有限责任公司, 广州 510000; 2. 中国南方电网有限责任公司, 广州 510000; 3. 西安交通大学 电气工程学院, 西安 710049)
Author(s):
LIU Qin1 PENG Zaixing1 WANG Song1 YI Lin1 CHEN Xi2 CHU Feihang3 LUO Ting3 LIANG Mengjie3 YI Min3 LIU Dingxin3
(1. Electrical Power Research Institute of CSG, Guangzhou 510000, China; 2. China Southern Power Grid Co., Ltd., Guangzhou 510000, China; 3. College of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)
关键词:
高压断路器 分合闸线圈电流 随机森林算法 故障诊断
Keywords:
HV circuit breaker reclosing coil current random forest algorithm fault diagnosis
DOI:
10.13296/j.1001-1609.hva.2019.07.014
摘要:
高压断路器是电力系统的核心设备,其稳定可靠运行具有重要意义。高压断路器分合闸电流曲线能够很大程度上反映高压断路器分合闸机构的运行状态,因此文中研究了在几种典型故障条件下,断路器分合闸线圈电流的变化。随机森林算法由于算法实现过程中的两次随机过程,使得算法过拟合风险大大降低,模型泛化能力大大增强。提出了使用随机森林算法识别故障电流曲线,取得了很好的效果。
Abstract:
To identify the fault types of high-voltage circuit breaker accurately and reliably, a fault diagnosis method for high voltage circuit breaker is formed. In this paper, the reclosing coil current of HV circuit breaker under different conditions is analyzed, in order to extract time and current as characteristic parameters to form training set. Combining random forest algorithm (RF) with training set, random forest classifier is established to distinguish fault types of high voltage circuit breakers efficiently. Experiments show that the algorithm can accurately distinguish the fault of high voltage circuit breaker, which greatly improves the utilization rate and efficiency of HV circuit breaker.

参考文献/References:

[1] 徐国政,张节容,钱家骊,等. 高压断路器原理和应用[M]. 北京:清华大学出版社,2000. XU Guozheng, ZHANG Jierong, QIAN Jiali, et al. Principleand application of high voltage circuit breaker[M]. Beijing: Tsinghua University Press, 2000.
[2] 代群威,焦 峰. 高压断路器机械特性在线监测的研究[J]. 中国电业(技术版),2011,7(7): 5-9. DAI Qunwei, JIAO Feng. Research on online monitoring of high voltage circuit breaker mechanical characteristic[J]. China Electric Power(Technology Edition),2011, 7(7) : 5-9.
[3] 赵莉华,张 浩,景 伟,等. 基于线圈电流的高压断路器操作机构性能研究[J]. 四川大学学报,2015,47(5):146-152. ZHAO Lihua, ZHANG Hao, JING Wei, et al. Research on operating mechanism performance of high voltage circuit breaker based on the coil current[J]. Journal of Sichuan University, 2015, 47(5):146-152.
[4] 孙银山,张文涛,张一茗. 高压断路器分合闸线圈电流信号特征提取与故障判别方法研究[J]. 高压电器,2015,51(9),134-139. SUN Yinshan, ZHANG Wentao,ZHANG Yiming. Research on feature value extraction and fault recognition of coil current signal in high-voltage circuit breaker[J]. High Voltage Apparatus, 2015, 51(9): 134-139.
[5] 孙曙光,张 强,杜太行,等. 基于分合闸线圈电流的万能式断路器故障诊断[J]. 仪器仪表学报,2018,39(2):130-138. SUN Shuguang, ZHANG Qiang, DU Taihang, et al. Fault diagnosis for conventional circuit breaker based on switching coil current[J]. Chinese Journal of Scientific Instrument, 2018, 39(2): 130-138.
[6] 陈 辰,厉小润. 基于线圈电流分析的操作机构故障诊断方法[J]. 浙江大学学报,2016,50(3): 527-535. CHEN Chen, LI Xiaorun. Fault diagnosis method of circuit breaker operating mechanism based on coil current analysis[J]. Journal of Zhejiang University, 2016, 50(3): 527-535.
[7] RUNDE R H. Continuous monitoring of circuit breakers using vibration analysis [J]. IEEE Transaction on Power Delivery 2005,20(6): 2458-2465.
[8] OPARIN I, GLEMBEK O, BURGET L, et al. Morphological random forests for language modeling of inflectional languages[C]//2nd IEEE Workshop. on Spoken Language Technology.[S.l.]:IEEE Computer Society, 2008: 189-192.
[9] 李明昆,宋丹妮. 基于小波分析和随机森林算法的变流器电路故障诊断研究[J]. 电气技术,2016(6):36-39. LI Mingkun,SONG Danni. Fault diagnosis method of converter circuit base on wavelet analyze and RF algorithm[J]. Electric Technology, 2016(6):36-39.
[10] 韦古强,杜冠洲,凌俊斌. 基于随机森林算法的风电机组故障智能诊断预警模型[J]. 中国高新技术企业,2017(7):197-198. WEI Guqiang,DU Guanzhou,LING Junbin. Wind turbines fault diagnosis model for early warning based on RF algorithm[J]. China High Technology Enterprises,2017(7):197-198.
[11] 蔡金锭,鄢仁武. 基于小波分析与随机森林算法的电力电子电路故障诊断. 电力科学与技术学报[J]. 2011,26)2):55-57. CAI Jinding, YAN Renwu. Fault diagnosis of power electronic circuit based on wavelet analysis and random forests algorithm[J]. 2011, 26(2):55-57.
[12] 包 灿. 基于随机森林算法的牵引变压器和可控高压电抗器保护研究[D]. 南京:南京师范大学,2017. BAO Can. Protection research of traction transformer and controlled high voltage reactor[D]. Nanjing: Nanjing Normal University, 2017.
[13] 荣命哲,贾申利,王小华. 电器设备状态在线监测[M]. 北京:机械工业出版社,2007. RONG Mingzhe, JIA Shenli, WANG Xiaohua. Online monitoring of the states of electrical apparatus[M]. Beijing: China Machine Press,2007.
[14] 李恒真,谢志杨,王继锋. 基于K-S检验法和SVM的高压断路器分合闸线圈回路故障诊断[J]. 电气安全,2016,35(9):53-58. LI Hengzhen, XIE Zhiyang, WANG Jifeng. Fault diagnosis for opening/closing coil circuit of high voltage circuit hreakers based on K-S check and SVM[J]. Electric Safety, 2016,35(9):53-58.
[15] 李劲彬,全江涛,陈 隽. 基于分合闸线圈电流的某换流站开关故障分析[J]. 高压电器,2015,51(2):141-145. LI Jinhin, QUAN Jiangtao, CHEN Jun. Fault analysis of circuit breaker in a converter station haled on switching coil currents[J]. High Voltage Apparatus, 2015,51(2): 141-145.
[16] 彭在兴,王 颂,刘 芹,等. 高压断路器分合闸线圈电流采集实验平台与故障模拟实验研究[J]. 高压电器,2018,54(7):248-253. PENG Zaixing, WANG Song, LIU Qin, et al. Experimental platform of high voltage circuit breaker’s opening/closing coil current acquisition and fault simulation experiment research[J]. High Voltage Apparatus, 2018, 54(7): 248-253.
[17] LI K,LIU W K,WANG J. An intelligent control method for a large multi-parameter environmental simulation cabin[J].Chinese Journal of Aeronautics,2013,26(6) : 1360-1369.
[18] BREIMAN L . Random forest[J]. Machine Learning, 2001, 45(1): 5-32.
[19] 鲁奉军. 基于随机森林算法的目标检测与动作识别方法研究[D]. 长春:吉林大学,2016. LU Fengjun. Research on object detection and action recognition based on random forests algorithm[D]. Changchun: Jilin University, 2016.
[20] 朱文博. 基于改进决策树的轨道电路故障诊断方法研[D]. 成都:西南交通大学,2014. ZHU Wenbo. Research on fault diagnosis for track circuits based on improved decision tree[D]. Chengdu: Southwest Jiaotong University, 2014.

备注/Memo

备注/Memo:
刘 芹(1982—),女,硕士,工程师,主要从事高压开关与直流电源设备运行技术的研究工作。收稿日期:2018-11-30; 修回日期:2019-01-19
更新日期/Last Update: 2019-07-15