[1]费 力,张 磊,何立明,等.环境压力对滑动弧放电等离子体助 燃激励器特性的影响研究[J].高压电器,2019,55(07):127-134.[doi:10.13296/j.1001-1609.hva.2019.07.019]
 FEI Li,ZHANG Lei,HE Liming,et al.Investigation on the Influence of Environmental Pressure on the Gliding Arc Discharge Plasma Actuator Combustion Characteristics[J].High Voltage Apparatus,2019,55(07):127-134.[doi:10.13296/j.1001-1609.hva.2019.07.019]
点击复制

环境压力对滑动弧放电等离子体助 燃激励器特性的影响研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年07期
页码:
127-134
栏目:
研究与分析
出版日期:
2019-07-15

文章信息/Info

Title:
Investigation on the Influence of Environmental Pressure on the Gliding Arc Discharge Plasma Actuator Combustion Characteristics
作者:
费 力1 张 磊2 何立明1 陈 一1 朱春昶1 赵兵兵1
(1. 空军工程大学航空工程学院, 西安 710038; 2. 中国人民解放军第95973部队, 辽宁 阜新 123100)
Author(s):
FEI Li1 ZHANG Lei2 HE Liming1 CHEN Yi1 ZHU Chunchang1 ZHAO Bingbing1
(1. College of Aeronautics Engineering, Air Force Engineering University, Xi’an 710038, China; 2. Unit 95937 of PLA, Liaoning Fuxin, 123100, China)
关键词:
三维旋转滑动弧 电弧滑动模式 环境压力 放电特性
Keywords:
3D rotating gliding arc discharge plasma assisted combustion actuator environmental pressure discharge characteristic
DOI:
10.13296/j.1001-1609.hva.2019.07.019
摘要:
在航空发动机上运用等离子体助燃技术能够有效减少燃烧化学反应所需的活化能,提高燃烧效率。为了将该项技术真正应用到航空发动机燃烧室,搭建了三维旋转滑动弧放电等离子体助燃激励器放电特性的实验平台,采用实验与理论分析相结合的方法,探索环境压力对三维旋转滑动弧放电等离子体助燃激励器特性的影响。结果表明,在三维旋转滑动弧放电过程中,电弧在击穿伴随滑动模式(B-GI)和稳定电弧滑动模式(A-G)之间还存在一种过渡模式(B-GII),同时具有以上两种模式特征。环境压力对电弧滑动模式影响显著,当压力小于1 bar(1 bar=0.1 MPa)时,电弧滑动模式随气压升高逐渐从B-GI模式发展为A-G模式。与此同时,随着环境压力的增大,电弧击穿电压和峰—峰值电压也随之增大,但由于放电过程中的电弧滑动模式转换,击穿电压在0.5~0.7 bar范围附近会有小幅度的减小。
Abstract:
The application of plasma assisted combustion technology in aero engines can effectively reduce the activation energy required for chemical reactions during combustion and improve combustion efficiency. In order to truly apply this technology to the combustion chamber of aero-engine, an experimental system for the discharge characteristics of the three-dimensional rotary gliding arc discharge plasma assisted combustion exciter is established in this paper. The combination of experimental and theoretical analysis is used to explore the influence of ambient pressure on the characteristics of three-dimensional rotary sliding arc discharge plasma assisted combustion exciter. The results show that there is a transition mode (B-GII) between the Breakdown Gliding mode (B-GI) and the steady arc gliding mode (A-G), which has two characteristics. The environmental pressure has a significant influence on the arc sliding mode. When the pressure is less than 1 bar(1 bar=0.1 MPa), the arc sliding mode continuously develops from the B-GI mode to the A-G mode as the air pressure rises. At the same time, with the increase of environmental pressure, the arc breakdown voltage and the peak-to-peak voltage also increase. However, due to the arc sliding mode conversion in the discharge process, the breakdown voltage will decrease slightly in the range of 0.5~0.7 bar.

参考文献/References:

[1] LEONOV S B, YARANTSEV D A, NAPARTOVICH A P, et al. Plasma-induced ignition and plasma-assisted combustion in high speed flow[J]. Plasma Sources Science and Technology, 2006, 16(1): 132-138.
[2] STARIKOVSKAIA S M. Plasma assisted ignition and combustion[M]. Weinheim:Wiley VCH Verlag GmbH & Co. KGaA,2010.
[3] BROWN M, FORLINES R A, GANGULY B, et al. Pulsed DC discharge dynamics and radical driven chemistry of ignition[C]//43th AIAA Aerospace Sciences Meeting & Exhibit. Reno,Nevada: AIAA, 2013:1-8.
[4] MINTUSOV E, SERDYUCHENKO A, CHOI I, et al. Mechanism of plasma assisted oxidation and ignition of ethylene-air flows by a repetitively pulsed nanosecond discharge[J]. Proceedings of the Combustion Institute, 2009, 32(2):3181-3188.
[5] CUMPSTY N A. Jet propulsion: a simple guide to the aerodynamics and thermodynamic, design and performance of jet engines[M]. New York,USA: Cambridge University Press, 1997:35-68.
[6] ROSOCHA L A, COATES D M, PLATTS D, et al. Plasma enhanced combustion of propane using a silent discharge[J]. Physics of plasmas, 2004, 11(5):2950-2956.
[7] KOSAREV I N, MINTOUSSOV E I, STARIKOVSKAYA S M, et al. Control of combustion and ignition of hydrocarbon-air mixtures by nanosecond pulsed discharges[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reno,Nevada: AIAA/CIRA, 2005:1-7.
[8] 林宇震,许全宏,刘高思.燃气轮机燃烧室[M]. 北京: 国防工业出版社, 2008. LIN Yuzhen, XU Quanhong, LIU Gaosi. Gas turbine combustor[M]. Beijing: National Defense Industry Press,2008.
[9] BAHR D W. Technology for the design of high temperature rise combustors[J]. Journal of Propulsion and Power, 1987, 3(2):179-186.
[10] KLIMOV A, BYTURIN V, BROVKIN V, et al. Plasma assisted combustion[C]//39th Aerospace Sciences Meeting and Exhibit. Reno,Nevada:AIAA, 2001:1-9.
[11] KLIMOV A, BYTURIN V, MORALEV I, et al. Non-premixed plasma-assisted combustion in high speed airflow[C]//44th AIAA Aerospace Sciences Meeting & Exhibit. Reno,Nevada: AIAA, 2006:1-10.
[12] MEYER R, MCELDOWNEY B, CHINTALA N, et al. Experimental studies of plasma assisted ignition and MHD supersonic flow control[C]//41th AIAA Aerospace Sciences Meeting. Reno,Nevada: AIAA,2013:1-9.
[13] CHINTALA N, MEYER R, ADAMOVICH I, et al. Non-thermal ignition of premixed hydrocarbon-air and co-air flows by non-equilibrium RF plasma[C]//42th AIAA Aerospace Sciences Meeting & Exhibit. Reno,Nevada: AIAA, 2004:1-18.
[14] CHINTALA N, MEYER R, HICKS A, et al. Non-thermal ignition of premixed hydrocarbon-air flows by non-equilibrium radio frequency plasma[J]. Journal of Propulsion and Power, 2005, 21(4):583-590.
[15] MATVEEV I, MATVEEVA S, KOROLEV Y, et al. A multi-mode plasma pilots[C]//45th AIAA Aerospace Sciences Meeting & Ex-hibit. Reno,Nevada: AIAA, 2007:1-8.
[16] 胡宏斌, 徐 纲, 房爱兵, 等. 非平衡等离子体助燃低热值气体燃料[J]. 工程热物理学报,2010,31(9):1603-1606. HU Hongbin, XU Gang, FANG Aibing, et al. Non-equilibriun plasma assisted combustion of low fuels[J]. Journal of Engineering Thermophysics, 2010, 31(9):1603-1606.
[17] 李 平,穆海宝,喻 琳,等.低温等离子体辅助燃烧的研究进展、关键问题及展望[J]. 高电压技术, 2015, 41(6):2073-2083. LI Ping, MU Haibao, YU Lin, et al. Progress key problems and prospect on low temperature plassma assisted combustion[J]. High Voltage Engineering, 2015, 41(6):2073-2083.
[18] 王世强,薛建议,穆海宝,等.基于特征参量优选与多算法联合的局部放电模式识别方法[J]. 高压电器, 2018, 54(10):112-119. WANG Shiqiang, XUE Jianyi, MU Haibao, et al. Pattern recognition of partial discharge based on the feature parameter optimization selection and multi-algorithm combined methods[J]. High Voltage Apparatus,2018,54(10):112-119.
[19] 兰宇丹, 何立明, 郭向阳,等.不同初始温度下等离子体对H2/Air混合物燃烧影响[J]. 推进技术, 2009, 30(6):651-655. LAN Yudan, HE Liming, GUO Xiangyang, et al. Effects of plasma on the combustion of H2 /Air mixture under different initial temperatures[J]. Journal of Propulsion and Technology,2009, 30(6):651-655.
[20] 赵兵兵, 张 鹏, 何立明,等.等离子体助燃对燃烧产物影响的实验[J]. 航空动力学报, 2012,27(9):1974-1978. ZHAO Bingbing, ZHANG Peng, HE Liming, et al. Experiments of plasma assisted combustion’s effect on combustion products[J]. Journal of Aerospace Power, 2012, 27(9):1974-1978.
[21] 刘兴建, 何立明, 白晓峰, 等. 高温电弧等离子体点火器特性实验研究[J]. 高电电器, 2012, 48(12):22-32. LIU Xingjian, HE Liming, BAI Xiaofeng, et al. Experimental investigation on high temperature arc plasma igniter characteristics[J]. High Voltage Apparatus,2012,48(12):22-32.
[22] 杜宏亮, 何立明, 丁 伟, 等. 等离子体助燃激励器介质阻挡放电发射光谱分析[J]. 高电电器, 2010,48(12):14-21. DU Hongliang, HE Liming, DING Wei, et al. Emission spectrum analysis of DBD from plasma combustion-supporting actuator[J]. High Voltage Apparatus. 2012, 48(12):14-21.
[23] 何立明. 飞机推进系统原理[M]. 北京: 国防工业出版社, 2006. HE Liming. Principles of aircraft propulsion systems[M]. Beijing: National Defense Industry Press,2006.
[24] 何立明, 陈 一, 刘兴建, 等. 大气压交流滑动弧的放电特性[J]. 高电压技术, 2016,42(6):1921-1928. HE Liming, CHEN Yi , LIU Xingjian,et al. Characteristic of atmospheric pressure AC gliding arc discharge[J]. High Voltage Engineering, 2016,42(6):1921-1928.
[25] 何立明, 雷健平, 陈 一, 等. 大气压交流旋转滑动弧的放电特性[J]. 高电压技术, 2017,43(9):3061-3069. HE Liming, LEI Jianping, CHEN Yi ,et al. Characteristic of atmospheric pressure AC rotating gliding arc discharge[J]. High Voltage Engineering, 2017,43 (9):3061-3069.
[26] 李晓东, 张 明, 朱凤森, 等. 滑动弧促进甲烷干重整电弧图像及电参数分析[J]. 高电压技术, 2015,41 (6):2022-2029. LI Xiaodong, ZHANG Ming, ZHU Fengsen,et al. Analysis of the images and electrical parameters of rotating gliding arc for the dry reforming of methane[J]. High Voltage Engineering, 2015,41(6):2022-2029.

备注/Memo

备注/Memo:
收稿日期:2019-02-15; 修回日期:2019-04-10 基金项目:国家自然科学基金(51436008,51806245)。 Project Supported by National Natural Science Foundation of China(51436008,51806245).费 力(1994—),男,硕士研究生,研究方向为等离子体辅助燃烧的相关研究。
更新日期/Last Update: 2019-07-15