[1]孙晓东,曹晓斌,李瑞芳.地铁高架桥段接触轨线路雷击闪络特性研究[J].高压电器,2019,55(07):135-141.[doi:10.13296/j.1001-1609.hva.2019.07.020]
 SUN Xiaodong,CAO Xiaobin,LI Ruifang.Research on Lightning Flashover Characteristics of Metro Contact Rail Line Along Viaduct Section[J].High Voltage Apparatus,2019,55(07):135-141.[doi:10.13296/j.1001-1609.hva.2019.07.020]
点击复制

地铁高架桥段接触轨线路雷击闪络特性研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年07期
页码:
135-141
栏目:
研究与分析
出版日期:
2019-07-15

文章信息/Info

Title:
Research on Lightning Flashover Characteristics of Metro Contact Rail Line Along Viaduct Section
作者:
孙晓东12 曹晓斌2 李瑞芳2
(1. 国网河南省电力公司许昌供电公司, 河南 许昌 461000; 2. 西南交通大学电气工程学院, 成都 610031)
Author(s):
SUN Xiaodong12 CAO Xiaobin2 LI Ruifang2
(1. Xuchang Power Supply Company of State Grid Henan Electric Power Company, Henan Xuchang 461000, China; 2. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)
关键词:
接触轨 闪络特性 绝缘支架 列车 避雷带
Keywords:
contact rail flashover characteristic insulated guardrail train lightning strip
DOI:
10.13296/j.1001-1609.hva.2019.07.020
摘要:
研究地铁高架段接触轨线路雷击闪络特性,对制定接触轨防雷标准有着十分重要的意义。文中基于滚球法分析了接触轨高架桥段线路易发生的雷击类型,在此基础上,搭建了地铁高架段接触轨模型,研究不同雷击类型条件下对应的雷击闪络特性,分析了桥墩接地电阻改变对各导体之间电压的影响。研究发现:地铁高架段接触轨供电系统主要受雷击避雷带跟雷击列车这两种雷击类型的影响。当雷击避雷带时,接触轨感应过电压造成绝缘支架闪络所需的雷电流水平低于地电位反击所需的雷电流水平,因此感应过电压是造成绝缘支架闪络的主要原因。而雷击列车时,雷电流幅值达到118 kA才会通过感应的形式造成绝缘支架闪络,但此时累积概率较小,因此工程上认为引发绝缘支架闪络的可能性不高。
Abstract:
It is very significant to setting up lightning protection standard for contact rail, studying on lightning flashover characteristics of contact rail line along viaduct section. The paper is based on the roiling ball method, the lightning strike type about metro contact rail are divided. On this basis, building the contact rail model of elevated section under different lightning stroke types, the lightning flashover characteristics under different lightning strike types are studied, and the influences of pier grounding resistance change on conductor voltage difference are analyzed. The research founds that two types between lightning strikes lightning strip and lightning strike train are prone to occur. When lightning strikes the lightning strip, lightning current level required for insulation bracket flashover, which caused by induced overvoltage of the contact rail is lower than that of ground potential counterattack, so the main reason for the insulation bracket flashover is the induced overvoltage. When lightning strikes the train, the lightning current amplitude reaches 118 kA, which will cause the insulation bracket flashover through the form of inducted overvoltage, but the cumulative probability is small, so the probability of lightning strike triggered insulated guardrail flashover is not high.

参考文献/References:

[1] 赵海军,陈维江,沈海滨,等. 地铁架空地线的防雷接地方案研究[J].电气化铁道,2015(2):28-34. ZHAO Haijun, CHEN Weijiang, SHEN Haibin, et al. Research on grounding scheme for overhead ground wire of subway[J]. Journal of Electric Railway, 2015(2):28-34.
[2] 田 雨. 津滨轻轨架空接触网雷害防治研究[J]. 铁道工程学报,2014(5):90-94. TIAN Yu.Research on the lightning protection of OCS in Tianjin-Binhai light rail[J]. Journal of Railway Engineering Society, 2014(5):90-94.
[3] 王欣眉,宋 琳,吴蓓,等. 青岛地铁三号线雷击风险评估分析[J]. 山东气象, 2014,34(1):25-30. WANG Xinmei, SONG Lin, WU Bei, et al. Qingdao metro line 3 lightning risk assessment analysis[J]. Shandong Meteorology, 2014,34(1): 25-30.
[4] 向 东. 广州地铁四号线高架防雷设计[J]. 建筑电气,2007(10):299-304. XIANG Dong. Design of lightning protection for elevated part of line 4 of Guangzhou metro[J]. Building Electricity, 2007(10): 41-44.
[5] 刘永红. 地铁车站的防雷接地保护研究[J]. 铁道工程学报,2008,30(4):94-97. LIU Yonghong. Research on grounding protection of the subway station[J]. Journal of Railway Engineering Society, 2008,30(4):94-97.
[6] 李 征,肖稳安,陈 凯. 南京地铁柔性接触网的雷电综合防护对策[J]. 陕西气象,2012(3):43-45. LI Zheng, XIAO Wen’an, CHEN Kai. Integrated lightning protection measures of Nanjing subway flexible catenary[J]. Shaanxi Meteorology, 2012(3): 43-45.
[7] 焦 劼. 地铁高架车站及高架线路的综合防雷分析[J]. 电气安全,2013,32(10):54-56. JIAO Jie, Comprehensive analysis of lightning overhead lines and elevated subway stations[J]. Electric Safety, 2013, 32(10): 54-56.
[8] 彭大明. 明珠线一期工程接触网防雷接地系统[J]. 电气化铁道,2004(2):41-42. PENG Daming. A catenary lightning protection and grounding systems engineering in Pearl line[J]. Electric Railway, 2004(2): 41-42.
[9] 地铁设计规范:GB 50157—2013[S]. 2013. Code for design of metro:GB 50157—2013[S]. 2013.
[10] 城市轨道交通直流牵引供电系统:GB/T 10411—2005[S]. 2005. DC Traction power supply system for urban rail transit:GB/T 10411—2005[S]. 2005.
[11] 城市轨道交通技术规范:GB 50495—2009[S]. 2009. Technical code of urban rail transit:GB 50495—2009[S]. 2009.
[12] 城市轨道交通接触轨供电系统技术规范:CJJ/T 198—2013[S]. 2013. Technical code for contact rail power supply system of urban rail transit:CJJ/T 198—2013[S]. 2013.
[13] 丁淑霞. 地铁5号线宋家庄停车场接触轨安装施工技术[J]. 施工技术, 2008(37):283-285. DING Shuxia. Metro line 5 Songjiazhuang park contact rail installation construction technology[J]. Construction Technique, 2008(37):283-285.
[14] 刘永谦. 地铁项目综合防雷设计的探讨[J]. 大连铁道学院学报,2006,27(2):83-86. LIU Yongqian. Investigate integrated mine subway project design[J]. Journal of Dalian Railway Institute, 2006, 27(2): 83-86.
[15] 王晓东,张洪斌. 城市轨道交通直流牵引供电系统的仿真研究[J]. 系统仿真学报,2002,14(12):1692-1697. WANG Xiaodong, ZHANG Hongbin. Simulation study of DC traction power supply system for urban rail transportation[J]. Journal of system simulation,2002,14(12):1692-1697.
[16] 王小峰. 城市轨道交通供电系统的设计方法[J]. 电气化铁道,2010(4):42-46. WANG Xiaofeng. Design method of power supply system for urban rail transit[J]. Electric Railway,2010(4):42-46.
[17] 李寒生. 城市轨道交通供电系统综合分析及其建设运营模式探索[J]. 铁道标准设计,2013(5):119-122. LI Hansheng. Comprehensive analysis on urban rail transit power supply[J]. Journal of Railway Standard,2013(5):119-122.
[18] 建筑物防雷设计规范:GB 50057—2010[S]. 2010. Design code for protection of Structures against lightning:GB 50057—2010[S]. 2010.
[19] PRABHAKAR B R,NANDAGOPAL M R,GOPALAKRISHNA H V. Effect of humidity and temperature on impulse flashover voltage of airgaps[J]. Proceedings of the Institution of Electrical Engineers, 2010(5):823-824.
[20] 韩 虎.地铁高架桥段雷击特性及防护技术研究[D]. 成都:西南交通大学,2016. HAN Hu. Research on lightning characteristics and protection technology of metro line on the viaduct[D]. Chengdu: Southwest Jiaotong University,2016.
[21] 路新瀛,李翠玲,陈美霞,等. 混凝土渗透性的电学评价[J]. 混凝土与水泥制品,1999(5):12-14. LU Xinying, LI Cuiling, CHEN Meixia, et al. The electrodiagnostic evaluation of concrete permeability[J]. China Concrete and Cement Products,1999(5):12-14.
[22] FREY W, STRAESSNER R, EDINGER W, et al. Experimental results on the breakdown behaviour of concrete immersed in water[C]//Twenty-fifth International Power Modulator Symposium of High-voltage Workshop.[S.l.]:[s.n.], 2002: 410-413.
[23] 韩伟锋,胡学永,肖 石,等. 雷击接触网高速列车车体过电压分析[J]. 铁道科学与工程学报,2013,10(4):117-123. HAN Weifeng,HU Xueyong,XIAO Shi, et al. Analysis of railcars body over-voltage for electric multiple unit in the case of lightning catenary[J]. Journal of Railway Science and Engineering, 2013, 10(4): 117-123.
[24] CHARALAMBOUS C A, AYLOTT P. Dynamic stray current evaluations on cut-and-cover sections of DC metro systems[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8): 3530-3538.

备注/Memo

备注/Memo:
孙晓东(1992—),男,硕士,主要从事铁路防雷接地技术的应用与研究。 曹晓斌(1974—),男,副教授,主要从事特高压输电、防雷与接地、过电压及接地技术的应用与研究。 李瑞芳(1980—),女,博士,硕士生导师,从事超/特高压输电线路防雷接地、铁路防雷接地技术的应用与研究。收稿日期:2018-11-30; 修回日期:2019-01-29 基金项目:国家自然科学基金资助(51507145)。 Project Supported by the National Natural Science Funds of China (51507145).
更新日期/Last Update: 2019-07-15