[1]张施令,李京伟.基于NDIR技术的高压组合电器中CF4气体检测方法研究[J].高压电器,2019,55(07):158-164.[doi:10.13296/j.1001-1609.hva.2019.07.023]
 ZHANG Shiling,LI Jingwei.Research on CF4 Gas Detection Method in GIS Gas Chamber Based on NDIR Technology[J].High Voltage Apparatus,2019,55(07):158-164.[doi:10.13296/j.1001-1609.hva.2019.07.023]
点击复制

基于NDIR技术的高压组合电器中CF4气体检测方法研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年07期
页码:
158-164
栏目:
研究与分析
出版日期:
2019-07-15

文章信息/Info

Title:
Research on CF4 Gas Detection Method in GIS Gas Chamber Based on NDIR Technology
作者:
张施令1 李京伟2
(1. 国网重庆市电力公司电力科学研究院, 重庆 401123; 2. 河南省日立信股份有限公司, 郑州 450001)
Author(s):
ZHANG Shiling1 LI Jingwei2
(1. State Grid Chongqing Electric Power Company Chongqing Electric Power Research Institute, Chongqing 401123, China; 2. Henan Relations Co., Ltd., Zhengzhou 450001, China)
关键词:
GIS气室 CF4气体非分散红外技术 双波长红外差分 传感器 温度补偿 校准实验
Keywords:
GIS chamber CF4 gas non-spectroscopic infrared dual wavelength infrared difference sensor temperature compensation calibration experiment
DOI:
10.13296/j.1001-1609.hva.2019.07.023
摘要:
为了实现对高压组合电器GIS气室中CF4气体的在线实时检测,完善基于气体化学成分分析实现对高压电气设备缺陷诊断,应用非分散红外(NDIR)技术设计了一种光学CF4气体传感器。系统采用单光束双波长结构,确定了折返光路气室类型,提高系统灵敏度。硬件方面,采用具有多路12位精度的模数转换器高性能单片机,进一步提高检测精度。多组分配气系统实验测试结果显示:不同体积分数的CF4气体在RBF-PSO算法温度补偿前后传感器测试的最大示值误差分别为7.93%、1.20%;对不同体积分数的CF4气体量程标定测试时的参比信号幅值与测量通道信号幅值的比值SB/SA进行指数拟合,非线性相关度R2为0.999 3;传感器重复性平行实验显示RSD分别为0.87%、0.44%、0.32%。综上,验证了该CF4传感器在测量范围、抗干扰能力、检测精度及重复性等方面的优势。
Abstract:
In order to realize the on-line real-time detection of CF4 gas in GIS gas chamber and perfect the defect diagnosis of high-voltage electrical equipment based on gas chemical composition analysis, the optical CF4 gas sensor is designed by applying non-dispersive infrared (NDIR) technology. The system adopts a single-beam dual-wavelength structure to determine the type of return light path gas chamber and improve the sensitivity of the system. In terms of hardware, the high performance single chip microcomputer with multi-channel 12-bit ADC are adopted to further improve the detection accuracy. The test results of multi-group distribution gas system show that the maximum indication error of sensor test of CF4 gas with different volume fraction before and after temperature compensation by RBF-PSO algorithm is 7.93% and 1.20%, respectively. The ratio of SB/SA between reference signal amplitude and measurement channel signal amplitude in the calibration test of CF4 gas range with different volume fraction is fitted exponentially, and the nonlinear correlation R2 is 0.999 3. The RSD of the sensor is 0.87%, 0.44% and 0.32%, respectively. In conclusion, the advantages of CF4 sensor in measuring range, anti-interference ability, detection accuracy and repeatability are verified.

参考文献/References:

[1] 宋 辉,代杰杰,李 喆,等. 运行条件下GIS局部放电严重程度评估方法[J]. 中国电机工程学报,2019,39(4):1231-1240. SONG Hui,DAI Jiejie,LI Zhe,et al. An assessment method of partial discharge severity for GIS in service[J]. Proceedings of the CSEE,2019,39(4):1231-1240.
[2] 张启浩,吴德贯,马正霖. ±800 kV 特高压直流输电工程直流穿墙套管设计缺陷及其改进方法[J]. 高压电器,2019,55(4):239-244. ZHANG Qihao,WU Deguan,MA Zhenglin. Defect and improved method of DC wall bushing design in ±800 kV UHVDC transmission project[J]. High Voltage Apparatus,2019,55(4): 239-244.
[3] TANG J, LIU F, ZAHNG X X, et al.-Characteristics of the concentration Ratio of SO2F2 to SOF2 as the decomposition products of SF6 under corona discharge[J]. IEEE Transactions on Plasma Science, 2012, 40(1):56-62.
[4] 陈 俊,基于气体分析的电气设备潜伏性缺陷诊断技术研究及应用[D]. 武汉:武汉大学,2014. CHEN Jun, Research and application of latent defect diagnosis technology of electrical equipment based on gas analysis[D]. Wuhan:Wuhan University,2014.
[5] 高 乾. 基于非色散红外吸收原理的可燃气体浓度探测仪研制[J]. 工业仪表与自动化装置, 2018(1):78-81. GAO Qian. A NDIR principle based combustible gas concentration detection system[J]. Industrial Instrumentation & Automation, 2018(1):78-81.
[6] 沈 婉,常建华,赵勇毅, 等. 便携式非分光红外SF6气体检测方法研究[J]. 应用光学, 2018, 39(4): 545- 550. SHEN Wan, CHANG Jianhua, ZHAO Yongyi, et al. Research on method of portable NDIR SF6 gas detection[J]. Journal of Applied Optics, 2018,39(4):545-550.
[7] 乔学光, 王 佳, 贾振安, 等.光纤CH4气体传感器的实验研究[J]. 光电子激光, 2009, 20(7):851-854. QIAO Xueguang, WANG Jia, JIA Zhen’an, et al. Experiment research for optical fiber methane gas sensor[J]. Journal of Optoelectronics Laser, 2009, 20(7):851-854.
[8] 刘国华, 张玉钧, 张 恺, 等.机动车尾气CO检测中神经网络多环境因子在线修正算法研究[J]. 红外与毫米波学报, 2018,37(6):704-710. LIU Guohua, ZHANG Yujun, ZHANG Kai, et al. Research on online correction algorithm with neural networkmulti-environment factors for CO detection of motor vehicle exhaust[J]. Infrared Millimeter Waves,2018,37(6):704-710.
[9] 陈 晨,张玉钧,何 莹, 等. 机动车尾气NDIR 传感器性能仿真分析[J]. 红外技术, 2017, 39(6):567-573. CHEN Chen, ZHANG Yujun, HE Ying, et al. Performance simulation analysis of NDIR sensor for vehicle exhaust[J]. Infrared Technology,2017,39(6):567-573.
[10] 陈 淼,黄政伟,王 一. 基于NDIR 原理单光源单光路实现多组分测量的技术开发[J]. 分析仪器, 2017(3):20-25. CHEN Miao, HUANG Zhengwei, WANG Yi. Development of multicomponent measurement by single light source and optical path based on a infrared gas analyzer of NDIR principle[J]. Analyze instrument, 2017(3):20-25.
[11] 涂志华, 赵 阳, 郑力文, 等. 基于非分散红外(NDIR)技术的土壤剖面二氧化碳浓度的测定[J]. 光谱学与光谱分析, 2015,35(4):997-1000. TU Zhihua, ZHAO Yang, ZHENG Liwen, et al. Detection of carbon dioxide concentration in soil profile based on nondispersive infrared spectroscopy technique[J]. Spectroscopy and Spectral Analysis, 2015,35(4):997-1000.
[12] 黄 见,胡顺星,曹开法,等. 可用于探测大气 CO2 垂直廓线的无线传感系统[J]. 红外与激光工程, 2016,45(4):1-6. HUANG Jian, HU Shunxing, CAO Kaifa, et al. Remote sensing system for vertical profiles of atmospheric CO2[J], Infrared and Laser Engineering, 2016, 45(4), 1-6.
[13] 淡淑恒,吴 娜,李昊东,等. 基于有限元和神经网络方法对220 kV盆式绝缘子均压环结构优化设计[J]. 高压电器,2018,54(3):79-85. DAN Shuheng, WU Na, LI Haodong,et al. Optimization design of grading ring for 220 kV basin-type insulator based on finite element method and neural network method[J]. High Voltage Apparatus, 2018,54(3):79-85.
[14] 王晓琪,吴春风. 1 000 kV GIS用套管的设计[J]. 高电压技术,2008,34(9):1792-1796. WANG Xiaoqi, WU Chunfeng. Design of 1 000 kV GIS bushing[J]. High Voltage Engineering, 2008, 34(9): 1792-1796.
[15] 李洪涛,杨景刚,马 勇,等. SF6气体中金属尖端缺陷局部放电发展过程研究[J]. 高压电器,2019,55(1):21-26. LI Hongtao, YANG Jinggang, MA Yong, et al. Study on the PD development process of metallic protrusion in SF6 gas[J]. High Voltage Apparatus, 2019,55(1):21-26.
[16] 李德军,沈 威,KUSCHEL M,等. 一种采用洁净空气绝缘和真空灭弧技术的环境友好型GIS的研究和应用[J]. 高压电器,2019,55(2):21-30. LI Dejun, SHEN Wei, KUSCHEL M, et al. Development and application of environment-friendly GIS combined clean air and vacuum interruption technology[J]. High Voltage Apparatus,2019,55(2):21-30.
[17] 周 波,胡与非,杨新春,等. 特高频及超声波法在GIS设备带电检测中的应用[J]. 高压电器,2019,55(1):54-58. ZHOU Bo, HU Yufei, YANG Xinchun, et al. Application of ultrahigh frequency and ultrasonic method in the live detection of GIS equipment[J]. High Voltage Apparatus, 2019,55(1):54-58.
[18] 唐 喜,叶志祥,任雁铭,等. 一种新型的高压开关综合在线监测IED设计与研制[J]. 高压电器,2019,55(2):97-103. TANG Xi, YE Zhixiang, REN Yanming, et al. Design and development of a novel integrated on-line monitoring IED for high voltage switchgear[J]. High Voltage Apparatus, 2019,55(2):97-103.
[19] 党沙沙,许 洋,张红松. Ansys12.0多物理耦合场有限元分析入门到精通[M]. 北京:机械出版社,2010:254-311. DANG Shasha, XU Yang, ZHANG Hongsong. Ansys12.0 finite element analysis of multiphysics coupling field from start to master[M]. Beijing: China Mechanical Press, 2010:254-311.
[20] 郭皓然,邵 伟,周阿维,等. 全局阈值自适应的高亮金属表面缺陷识别新方法[J]. 仪器仪表学报,2017,38(11):2797-2804. GUO Haoran, SHAO Wei, ZHOU Awei, et al. Novel defect recognition method based on adaptive global threshold for highlight metal surface[J]. Chinese Journal of Scientific Instrument, 2017,38(11):2797-2804.

备注/Memo

备注/Memo:
张施令(1986—),男,博士,高级工程师,从事超/特高压绝缘结构的优化设计、六氟化硫气体绝缘电力设备状态监测与寿命评估。收稿日期:2019-03-05; 修回日期:2019-04-20 基金项目:重庆市基础科学与前沿技术研究(cstc2018jcyjAX0486);重庆市电力公司科技项目(2018渝电科技4#)。 Project Supporte by Chongqing Research Program of Fundamental Science and Advanced Technology(cstc2018jcyjAX0486),Science and Technology Project of Chongqing Electric Power Company(2018 Yudian Technology 4#).
更新日期/Last Update: 2019-07-15