[1]张 军,吴金龙,王先为,等.混合直流输电系统过电压抑制方法研究[J].高压电器,2019,55(07):187-194.[doi:10.13296/j.1001-1609.hva.2019.07.027]
 ZHANG Jun,WU Jinlong,WANG Xianwei,et al.Research of Control Strategy of Suppressing Overvoltage on Hybrid-HVDC Transmission System[J].High Voltage Apparatus,2019,55(07):187-194.[doi:10.13296/j.1001-1609.hva.2019.07.027]
点击复制

混合直流输电系统过电压抑制方法研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年07期
页码:
187-194
栏目:
研究与分析
出版日期:
2019-07-15

文章信息/Info

Title:
Research of Control Strategy of Suppressing Overvoltage on Hybrid-HVDC Transmission System
作者:
张 军 吴金龙 王先为 胡丁文 牛 翀
(西安许继电力电子技术有限公司, 西安 710075)
Author(s):
ZHANG Jun WU Jinlong WANG Xianwei HU Dingwen NIU Chong
(Xi’an XJ Power Electronics Technology Co., Ltd., Xi’an 710075, China)
关键词:
混合直流输电系统 过电压水平 电流指令快速响应 充电回路
Keywords:
hybrid-HVDC transmission system overvoltage current order fast response strategycharging circuit
DOI:
10.13296/j.1001-1609.hva.2019.07.027
摘要:
混合直流输电系统中逆变站采用电压源换流器,彻底解决了换相失败问题,未来在多馈入直流输电地区发展前景非常好。过电压水平对系统的安全稳定和工程可行性非常关键,因此对于LCC-MMC混合直流输电系统过电压水平的抑制策略研究十分有必要。文中首先研究了LCC-D-MMC混合直流输电系统的运行原理,进一步研究了过电压发生的机理;然后分析了LCC-MMC混合直流输电系统过电压影响因素,在此基础上提出了混合直流输电系统过电压抑制策略;最后在PSCAD/ EMTDC软件中建立了LCC-MMC混合直流输电过电压仿真模型,对LCC-MMC过电压抑制策略进行了仿真验证。通过研究可知,MMC闭锁后存在的充电回路为混合直流输电系统过电压的主要因素,采用LCC电流指令快速响应策略可以有效的抑制系统过电压水平。
Abstract:
In hybrid-HVDC transmission system, voltage source converter is used in inverter station, by this the commutation failure would be avoided, it would be used widely for multi-infeed direct current system transmission system in future. Overvoltage is very critical for power transmission stability and engineering feasibility of hybrid-HVDC transmission system. It is necessary and significant to research overvoltage control strategy on hybrid-HVDC transmission system. Firstly, the operation and overvoltage mechanism of hybrid-HVDC transmission system are analyzed in this paper. Above this, overvoltage impact factors of hybrid-HVDC transmission system are comprehensively analyzed. Based on this, the overvoltage control strategy would is proposed in detail. Finally, LCC-MMC hybrid-HVDC transmission system and model are built by PSCAD/EMTDC, and the overvoltage control strategy is simulated. According to the analysis and result, the main factor of HVDC transmission system overvoltage is the charging circuit of sub-module, after MMC blocking. In addition, the overvoltage level of hybrid-HVDC transmission system could be suppressed effectively by LCC current order fast response strategy. This work is supported by State Grid Technology Project of China .

参考文献/References:

[1] 肖 俊,李兴源,张英敏,等. 多馈入直流系统换相失败分析[J]. 四川大学学报,2014,46(5): 139-147. XIAO Jun,LI Xingyuan,ZHANG Yingmin,et al. Study on commutation failure in mult-infeed HVDC system[J]. Journal of Sichuan University: Engineering Science,2014,46(5): 139-147.
[2] 王 峰,刘天琪,周胜军,等. 谐波对HVDC系统换相失败的影响机理及定量分析方法[J]. 中国电机工程学报,2014,35(19):4888-4894. WANG Feng,LIU Tianqi,ZHOU Shengjun,et al. Mechanism and quantitative analysis method for HVDC commutation failure resulting from harmonics[J]. Proceedings of the CSEE,2014,35(19):4888-4894.
[3] 刘羽超,郭春义,许韦华,等. 一种降低直流输电换相失败概率的控制方法[J]. 电网技术,2015,39(1):76-82. LIU Yuchao,GUO Chunyi,XU Weihua,et al. A control method to reduce commutation failure probability in HVDC power transmission[J]. Power System Technology,2015,39(1):76-82.
[4] WEI Z N,YUAN Y,LEI X,et al. Direct-current predictive control strategy for inhibiting commutation failure in HVDC converter[J]. IEEE Transactions on Power Systems,2014,29(5):2409-2417.
[5] RAHIMI E,GOLE A M,DAVIES J B. Commutation failure analysis in multi-infeed HVDC systems[J]. IEEE Transactions on Power Delivery,2011,26(1):378-384.
[6] 吴 萍,林伟芳,孙华东,等. 多馈入直流输电系统换相失败机制及特性[J]. 电网技术,2012,36(5):269-274. WU Ping,LIN Weifang,SUN Huadong,et al. Research and electromechanical transient simulation on mechanism of commutation failure in multi-infeed HVDC power transmission system[J]. Power System Technology,2012,36(5):269-274.
[7] 王永平,赵文强,杨建明,等. 混合直流输电技术及发展分析[J]. 电力系统自动化,2017,41(7):156-167. WANG Yongping,ZHAO Wenqiang,YANG Jianming,et al. Hybrid high-voltage direct current transmission technology and its development analysis[J]. Automation of Electric Power Systems,2017,41(7):156-167.
[8] 唐 庚,徐 政,薛英林,等. LCC-MMC混合高压直流输电系统[J]. 电工技术学报,2013,28(10):301-310. TANG Geng,XU Zheng,XUE Yinglin,et al. A LCC-MMC hybrid HVDC transmission system[J]. Transactions of China Electrotechnical Society,2013,28(10):301-310.
[9] 张哲任,徐 政,薛英林,等. LCC-MMC混合直流输电系统直流侧谐波电流计算[J]. 电力系统自动化,2014,38(23):65-70. ZHANG Zheren,XU Zheng,XUE Yinglin,et al. Calculation of DC side harmonic currents for LCC-MMC hybrid HVDC transmission system[J]. Automation of Electric Power Systems,2014,38(23):65-70.
[10] 卢向东,赵成勇. 基于VSC-HVDC的线路过电压抑制策略研究[J]. 高电压技术,2008,34(3):462-467. LU Xiangdong,ZHAO Chengyong. Study of control strategies of suppressing overvoltage on overhead lines by VSC-HVDC[J]. High Voltage Engineering,2008,34(3):462-467.
[11] 徐 政,王世佳,李宁璨,等. 用于远距离大容量架空线路的LCC-MMC串联混合型直流输电系统[J]. 电网技术,2016,40(1):55-63. XU Zheng,WANG Shijia,LI Ningcan,et al. A LCC and MMC series hybrid HVDC topology suitable for bulk power overhead line transmission[J]. Power System Technology,2016,40(1):55-63.
[12] AJAEI F B,IRAVANI R. Cable surge arrester operation due to transient over voltages under DC-side faults in the MMC-HVDC link[J]. IEEE Transactions on Power Delivery,2016,31(3): 1213-1222.
[13] 阎发友,汤广福,贺之渊,等. 基于MMC 的多端柔性直流输电系统改进下垂控制策略[J]. 中国电机工程学报,2014,34(3):397-405. YAN Fayou,TANG Guangfu,HE Zhiyuan,et al. An improved droop control strategy for MMC-based VSC-MTDC systems[J]. Proceedings of the CSEE,2014,34(3):397-405.
[14] BAUMAN J,KAZERANI M. Commutation failure reduction in HVDC systems using adaptive fuzzy logic controller[J]. IEEE Transactions on Power Systems,2007,22(4):1995-2002.
[15] 薛英林,徐 政,潘武略,等. 电流源型混合直流输电系统建模与仿真[J]. 电力系统自动化,2012,36(9):98-103. XUE Yinglin,XU Zheng,PAN Wulue,et al. Modeling and simulation for a hybrid current source converter high voltage direct current transmission system[J]. Automation of Electric Power Systems,2012,36(9):98-103.
[16] LEE H A,ANDERSON G. Power stability analysis of multi-infeed HVDC systems[J]. IEEE Transactions on Power Delivery,1998,13(3):923-931.
[17] 李广凯,李庚银,梁海峰,等. 新型混合直流输电方式的研究[J]. 电网技术,2006,30(4):82-86. LI Guangkai,LI Gengyin,LIANG Haifeng,et al. Research on a novel in hybrid-HVDC system[J]. Power System Technology,2006,30(4):82-86.
[18] 郭春义,刘文静,赵成勇,等. 混合直流输电系统的参数优化方法[J]. 电力系统自动化,2015,39(11):96-102. GUO Chunyi,LIU Wenjing,ZHAO Chengyong,et al. Parameters optimization method of hybrid HVDC transmission system[J]. Automation of Electric Power Systems,2015,39(11):96-102.
[19] 倪晓军,赵成勇,刘羽超,等. 混合双馈入直流系统中VSC-HVDC对LCC-HVDC受端系统强度的影响[J]. 中国电机工程学报,2015,35(16):4052-4061. NI Xiaojun,ZHAO Chengyong,LIU Yuchao,et al. The effects of VSC-HVDC on the system strength of LCC-HVDC in dual-infeed Hybrid HVDC system[J]. Proceedings of the CSEE,2015,35(16):4052-4061.
[20] 余 瑜,刘开培,陈灏泽,等. 伪双极VSC-LCC型混合直流输电系统启动方法[J]. 高电压技术,2014,40(8):2572-2578. YU Yu,LIU Kaipei,CHEN Haoze,et al. Startup procedure for VSC-LCC based hybrid pseudo bipolar HVDC system[J]. High Voltage Engineering,2014,40(8):2572-2578.
[21] ZHAO C,XU J,LI T. DC faults ride-through capability analysis of full-bridge MMC-MTDC system[J]. Science China (Technological Sciences),2013, 56(1): 253-261.
[22] 郭春义,赵成勇,王 晶. 新型双馈入直流输电系统供电无源网络的运行特性研究[J]. 电工技术学报,2012,27(11):211-218. GUO Chunyi,ZHAO Chengyong,WANG Jing. Operation characteristic research on novel double-infeed HVDC system supplying passive network[J]. Transactions of China Electrotechnical Society,2012,27(11): 211-218.
[23] KOURO S,BERNAL R,MIRANDA H,et al. High- performance torque and flux control for multilevel inverter fed induction motors[J]. IEEE Transactions on Power Electronics,2007,22(6): 2116-2123.
[24] TU Q R,XU Z,XU L. Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters[J]. IEEE Transactions on Power Delivery,2011,26(3): 2009-2017.

备注/Memo

备注/Memo:
张 军(1986—),男,硕士,研究方向为直流输电系统分析、过电压与绝缘配合设计。 吴金龙(1981—),男,硕士,研究方向为柔性直流输电系统分析与控制技术等。 王先为(1985—),男,博士,主要从事电力自动化研究工作。 胡丁文(1988—),男,硕士,研究方向为柔性直流输电系统分析与控制技术等。 牛 翀(1990—),男,硕士,研究方向为柔性直流输电系统分析与控制技术等。收稿日期:2018-10-19; 修回日期:2019-01-22 基金项目:国家电网科技项目。 Project Supported by the Science and Technology Program of SGCC.
更新日期/Last Update: 2019-07-15