[1]周小猛,林志力,苗本健,等.大容量试验短路电流波形参数的测算[J].高压电器,2019,55(07):227-234.[doi:10.13296/j.1001-1609.hva.2019.07.033]
 ZHOU Xiaomeng,LIN Zhili,MIAO Benjian,et al.Measurement and Calculation of Short-circuit Current Waveform Parameters for High Power Tests[J].High Voltage Apparatus,2019,55(07):227-234.[doi:10.13296/j.1001-1609.hva.2019.07.033]
点击复制

大容量试验短路电流波形参数的测算()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年07期
页码:
227-234
栏目:
技术讨论
出版日期:
2019-07-15

文章信息/Info

Title:
Measurement and Calculation of Short-circuit Current Waveform Parameters for High Power Tests
作者:
周小猛1 林志力2 苗本健2 李赛赛1 袁小娴1
(1. 国家智能电网输配电设备质量监督检验中心, 广东 东莞 523325; 2. 广东产品质量监督检验研究院, 广州 510670)
Author(s):
ZHOU Xiaomeng1 LIN Zhili2 MIAO Benjian2 LI Saisai1 YUAN Xiaoxian1
(1. China National Quality Supervision and Testing Center for Smart Grid Transmission and Distribution Equipment, Guangdong Dongguan 523325, China; 2. Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510330, China)
关键词:
大容量试验 短路电流 参数测算 直流时间常数 交流分量有效值 不确定度
Keywords:
high power tests short-circuit current parameter calculation DC time constant RMS value of AC component uncertainty
DOI:
10.13296/j.1001-1609.hva.2019.07.033
摘要:
采用抛物线拟合方法计算大容量试验短路电流波形的峰值和对应的时间坐标。理论证明短路电流波形上相邻两峰值的时间坐标中点的电流值近似等于此时的直流分量值,并据此给出波形的直流时间常数、交流(基波)分量有效值和直流分量百分数的算法。使用STL提供的标准短路电流波形,对文中算法和现有算法进行了对比测试。测试结果验证了该算法的准确性,同时表明,仅使用3个峰值点并未显著降低文中算法在计算交流分量恒定的短路电流波形参数时的准确度。通过计算直流时间常数不同、频率和交流分量有效值随时间变化等STL标准波形在每一个峰值点处的参数,得到该算法在计算峰值、直流时间常数、交流分量有效值、直流分量百分数时的相对扩展不确定度分别为0.03%、0.20%、0.40%、0.80%。
Abstract:
The parabolic curve fitting method is used to calculate the peak value and the corresponding time coordinate of short-circuit current waveform in high power tests. It is proved theoretically that the current value at the midpoint of the two adjacent peaks in the short-circuit current waveform is approximately equal to the DC component at this time. A algorithm to calculate the DC time constant, the RMS value of AC (fundamental) component and the percentage value of DC component is given accordingly. Using the standard short-circuit current waveform provided by STL, the algorithms of this paper and the existing ones are compared and tested. Test results verify the accuracy of the algorithms in this paper, and show that using only three peak points does not significantly reduce the accuracy of these algorithms when calculating short-circuit current waveform parameters with constant AC components. The relative expanded uncertainties of these algorithms in calculating the crest value, the DC time constant, the RMS value of AC component and the percentage value of DC component are 0.03%, 0.22%, 0.39%, and 0.76% respectively, which were obtained by calculating the parameters of the STL standard waveforms at each peak point, whose DC time constants different, frequency and the RMS value of AC component change over time.

参考文献/References:

[1] High-voltage switchgear and controlgear - Part 100: Alternating-current circuit-breakers:IEC 62271-100:2002[S]. 2012.
[2] 高电压试验技术第1部分:一般定义及试验要求:GB/T 16927.1—2011[S]. 2011. High voltage test techniques-Part 1:General definitions and test requirements:GB/T 16927.1—2011[S]. 2011.
[3] 高电压和大电流试验技术第4部分:试验电流和测量系统的定义和要求:GB/T 16927.4—2014[S]. 2014. High voltage and high current test techniques-Part 4:Definitions and requirements for test currents and measuring systems: GB/T 16927.4—2014[S]. 2014.
[4] 舒胜文, 阮江军, 黄道春, 等. 系统故障参数对真空断路器开断性能影响的建模与仿真研究[J]. 电力自动化设备, 2013, 33(11): 81-87. SHU Shengwen,RUAN Jiangjun,HUANG Daochun, et al. Influence of system fault parameters on breaking performance of vacuum circuit breaker:modeling and simulation[J]. Electric Power Automation Equipment,2013,33(11):81-87.
[5] 罗深增, 李银红, 游 昊, 等. 基于同步相量测量单元的串联补偿线路自适应故障定位算法[J]. 电工技术学报, 2017, 32(5): 143-151. LUO Shenzeng, LI Yinhong, YOU Hao, et al. An adaptive fault location algorithm based on PMU measurement for series compensated transmission lines[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 143-151.
[6] 蔡 超, 陆于平. 一种提高智能变电站PMU相量测量精度的改进采样值调整算法[J]. 电力自动化设备, 2014, 34(3): 149-154. CAI Chao, LU Yuping. Improved sampled value adjustment algorithm increasing measurement precision of smart substation PMU[J]. Electric Power Automation Equipment, 2014, 34(3): 149-154.
[7] 金 涛, 陈毅阳, 段小华, 等. 基于改进DFT的电力系统同步相量测量算法研究[J]. 电工技术学报, 2017, 32(17): 1-10. JIN Tao, CHEN Yiyang, Duan Xiaohua, et al. Research on synchronous phasor measurement algorithm of power system based on improved DFT[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 1-10.
[8] Short-circuit Testing Liaison. Harmonisation of data processing methods for high power laboratories[R]. Coventry, England: Short-circuit Testing Liaison, 2004.
[9] 王 晶,牟 磊,李彦明,等.大容量实验室电流波形参数计算机提取算法的研究[J].高压电器,2006,42(1):44-46. WANG Jing, MOU Lei, LI Yanming, et al. Computation methods of current waveform parameters in high power laboratory[J]. High Voltage Apparatus, 2006, 42(1): 44-46.
[10] 曹 炜, 王永生, 丁北平, 等.基于包络线和函数拟合的录波数据分析[J]. 上海电力学院学报, 2010, 26(4): 315-318. CAO Wei, WANG Yongsheng, DING Beiping, et al. Analytical study of fault recording data based on envelopes and function fitting[J]. Journal of Shanghai University of Electric Power, 2010, 26(4): 315-318.
[11] 吕思颖, 裴 旵, 秦 昕, 等. 基于小波多尺度分析和Kalman滤波的微机保护算法[J]. 电力系统保护与控制, 2015, 43(21): 54-59. LYU Siying, PEI Chan, QIN Xin, et al. Microprocessor- based protection algorithm based on wavelet multi-scale analysis and Kalman filter[J]. Power System Protection and Control, 2015, 43(21): 54-59.
[12] 任龙飞, 郝治国, 张保会, 等. 继电保护抗TA暂态饱和改进Prony算法[J]. 电力自动化设备,2014,34(5):126-132. REN Longfei,HAO Zhiguo,ZHANG Baohui, et al. Improved Prony algorithm against transient CT saturation for relay protection[J]. Electric Power Automation Equipment, 2014, 34(5): 126-132.
[13] 王家林, 夏 立, 吴正国, 等. 采用改进Prony算法的电力系统故障暂态信号分析[J]. 电力自动化设备, 2012, 32(7): 89-93. WANG Jialin,XIA Li,WU Zhengguo, et al. Analysis of power system transient signal based on improved Prony algorithm[J]. Electric Power Automation Equipment,2012, 32(7): 89-93.
[14] 符 玲, 韩文朕, 麦瑞坤, 等. 利用频域信息滤除衰减直流的同步相量测量算法[J]. 中国电机工程学报, 2016, 36(18): 4923-4929. FU Ling, HAN Wenzhen, MAI Ruikun, et al. Phasor estimator based on frequency-domain information considering decaying DC components[J]. Proceedings of the CSEE, 2016, 36(18): 4923-4929.
[15] 吴继维, 童晓阳, 廖小君, 等. 一种滤除衰减直流分量的全波傅氏改进算法研究[J]. 电力系统保护与控制, 2016, 44(2): 9-17. WU Jiwei, DONG Xiaoyang, LIAO Xiaojun, et al. A full-wave Fourier improved algorithm of filtering decaying DC component[J]. Power System Protection and Control, 2016, 44(2): 9-17.
[16] 厉 伟, 陈 刚. 一种利用LabVIEW滤除衰减直流分量的改进算法[J]. 电力系统保护与控制,2014,42(11):7-12. LI Wei, CHEN Gang. An improved algorithm to filter delaying DC component based on LabVIEW[J]. Power System Protection and Control, 2014, 42(11): 7-12.
[17] CHO Y S, LEE C K, JANG G, et al. An innovative decaying DC component estimation algorithm for digital relaying[J]. IEEE Transactions on Power Delivery, 2009, 24(1): 73-78.
[18] ALAM A S. A new fast algorithm to estimate real-time phasors using adaptive signal processing[J]. IEEE Transactions on Power Delivery, 2013, 28(2): 807-815.
[19] HOOSHYAR A, SANAYE-PASAND M. Accurate measurement of fault currents contaminated with decaying DC offset and CT saturation[J]. IEEE Transactions on Power Delivery, 2012, 27(2): 773- 783.
[20] 黄世年, 佟为明, 郭志忠, 等. 直接提取基频分量瞬时值的快速滤波算法[J]. 电力系统保护与控制, 2013, 41(3): 44-49. HUANG Shinian, TONG Weiming, GUO Zhizhong, et al. A fast filtering algorithm for extracting fundamental instantaneous value[J]. Power System Protection and Control, 2013, 41(3): 44-49.
[21] 吕思颖, 黎 丹, 要 航, 等. 基于无迹Kalman滤波的基波分量提取[J]. 电力系统保护与控制, 2016, 44(13): 79-84. LYU Siying, LI Dan, YAO Hang, et al. Fundamental component extraction based on unscented Kalman filter[J]. Power System Protection and Control, 2016, 44(13): 79-84.
[22] 邱关源. 电路[M]. 第5版. 北京:高等教育出版社, 2006. QIU Guanyuan. Circuit[M]. 5th Edition. Beijing: Higher Education Press, 2006.

备注/Memo

备注/Memo:
周小猛(1987—),男,硕士,工程师,从事高压大容量试验检测和回路设计工作。 林志力(1964—),男,硕士,教授级高工,主要从事电气检测研究工作。收稿日期:2018-12-05; 修回日期:2019-02-20 基金项目:国家质检总局科技计划项目(2015QK003)。 Project Supported by Science and Technology Plan Project of AQSIQ(2015QK003).
更新日期/Last Update: 2019-07-15