[1]李雪林,刘 峰,方 志.三维共面介质阻挡放电装置及放电特性研究[J].高压电器,2019,55(09):150-156.[doi:10.13296/j.1001-1609.hva.2019.09.020]
 LI Xuelin,LIU Feng,FANG Zhi.Research on Three Dimensional Coplanar Dielectric Barrier Discharge Device and Its Discharge Characteristics[J].High Voltage Apparatus,2019,55(09):150-156.[doi:10.13296/j.1001-1609.hva.2019.09.020]
点击复制

三维共面介质阻挡放电装置及放电特性研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年09期
页码:
150-156
栏目:
研究与分析
出版日期:
2019-09-30

文章信息/Info

Title:
Research on Three Dimensional Coplanar Dielectric Barrier Discharge Device and Its Discharge Characteristics
作者:
李雪林1 刘 峰2 方 志2
(1. 江苏旅游职业学院, 江苏 扬州 225001; 2. 南京工业大学电气工程与控制科学学院 , 南京 211816)
Author(s):
LI Xuelin1 LIU Feng2 FANG Zhi2
(1. Jiangsu College of Tourism, Jiangsu Yangzhou 225001, China; 2. College of Electrical Engineering and Control Science, Nanjing Tech. University, Nanjing 211816, China)
关键词:
共面介质阻挡放电 微秒脉冲 亲水改性 三维处理
Keywords:
coplanar dielectric barrier discharge microsecond pulse hydrophilic modification three-dimensional processing
DOI:
10.13296/j.1001-1609.hva.2019.09.020
摘要:
针对传统介质阻挡放电(DBD)和共面(CDBD)处理三维或不规则材料的不足,文中设 计一种由小型微秒脉冲电源驱动的三维CDBD处理装置,在箱体内部由多个单面CDBD反应器组合 形成空间环绕式等离子体。通过光学和电学诊断手段测量了装置的放电功率、发光图像以及发 射光谱等,研究了电源工作参数对放电均匀性、产生活性粒子强度以及能量效率的影响。结果 表明,随着电源电压的升高,放电区域变大,放电均匀性增强,当电压达到11-kV时能够激励 整个放电区域,形成较均匀的等离子体。相同电压下,活性粒子强度随频率升高而提高,在5 -kHz工作频率下产生的活性粒子强度最强,能量效率随工作频率升高有所下降,工作频率为1 -kHz时能量效率最高为40.1%。通过对木块进行表面亲水改性,来验证装置的三维材料处理效 果。结果表明,处理后木块各个表面的亲水性均得到增强,处理1 min后,达到稳态时的表面 水接触角由30°下降至10°,并且由初始值下降至30°以下的液滴静置时间减少了70%以上。
Abstract:
In order to compensate the deficiency of traditional dielectric barrier discharge (DBD) and coplanar dielectric barrier discharge (CDBD) on treating materials with three dimension or irregular shape, a three dimensional CDBD processing device driven by microsecond pulse power supply is designed. Spatially-surrounded plasma is generated by a plurality of single CDBD reactors inside the processing tank. The discharge power, luminescent image and emission spectrum are obtained by means of optical and electrical measurements. The influence of power supply parameters on discharge uniformity, the intensity of active particles and energy efficiency is investigated. The results show that the discharge area and uniformity are improved with the increasing of the supply power voltage. The whole surface discharge area is stimulated under the voltage of 11-kV , and uniform plasma is acquired. Under the same voltage, the intensity of active particles increases with the increase of frequency, and the intensity of active particles is the strongest at 5 kHz operating frequency. The energy efficiency decreases with the increase of working frequency. The highest energy efficiency is 40.1% at 1 kHz operating frequency. The wood blocks of Pinus Sylvestris are taken as the target to verify the function of the device for treating three dimensional materials. After treatment, the hydrophobicity of treated surfaces is synchronously improved. The water contact angle of steady status decreases from 30°to 10° after 1 min treatment, and the duration for the water contact angle of the wood block to fall from the initial value to less than 30° is reduced by more than 70%.

参考文献/References:

[1] KIM Y J,JIN S,HAN G H,et al. Plasma apparatuses for biomedical applications[J]. IEEE Transactions on Plasma Science,2015,43(4): 944-950.
[2] 张 凯,王瑞雪,高 远,等. 微秒和纳秒脉冲激励下甲烷DBD电学特性研究[J]. 高压电器,2017,53(4): 5-12. ZHANG Kai,WANG Ruixue,GAO Yuan,et al. Electric characteristics research of methane discharge based on DBD reactor under microsecond and nanosecond pulse power sources[J]. High Voltage Apparatus,2017, 53(4): 5-12.
[3] BOSCHER N D,DUDAY D,VERDIER S,et al. Single-step process for the deposition of high water contact angle and high water sliding angle surfaces by atmospheric pressure dielectric barrier discharge[J]. Applied Materials & Interfaces,2013,5(3): 1053-1060.
[4] 陈思乐,许桂敏,穆海宝,等. 低温等离子体处理柴油机尾气的研究进展[J]. 高 压电器,2016,52(4): 22-29. CHEN Sile,XU Guimin,MU Haibao,et al. Research progress in treatment of diesel engine exhaust by non-thermal plasmas[J]. High Voltage Apparatus,2016,52(4): 22-29.
[5] PESCINI E,MARTINEZ D S,GIORGI M G D,et al. Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields[J]. Acta Astronautica,2015(116): 318-332.
[6] ZHAO X,HE F,OUYANG J. Formation of striations in large-gap coplanar dielectric barrier discharge[J]. Physics Letters A,2012,376(28): 2057-2061.
[7] [CECH]ECH J,BRABLEC A,[CERNAK]M,et al. Mass spectrometry of diffuse coplanar surface barrier discharge: Influence of discharge frequency and oxygen content in N2 /O2,mixture[J]. European Physical Journal D,2017,71(2): 27.
[8] PAMREDDY A,SKACELOVA D,[HANICINEC]M,et al. Plasma cleaning and activation of silicon surface in dielectric coplanar surface barrier discharge[J]. Surface & Coatings Technology,2013,236(24): 326-331.
[9] PRYSIAZHNYI V,CERNAK M. Air plasma treatment of copper sheets using diffuse coplanar surface barrier discharge[J]. Thin Solid Films,2012,520 (21): 6561-6565.
[10] 郑 超,寇艳芹,刘 振,等. 大面积常压表面等离子体快速消毒灭菌实验研究 [J]. 高电压技术,2016,42(8):2558-2563. ZHENG Chao,KOU Yanqin,LIU Zhen,et al. Experimental study of fast disinfection by large area atmospheric surface plasma [J]. High Voltage Engineering,2016,42(8): 2558-2563.
[11] 章 程,邵 涛,龙凯华,等. 大气压空气中纳秒脉冲介质阻挡放电特性分析 [J]. 中国电机工程学报,2010,30(7):111-117. ZHANG Cheng,SHAO Tao,LONG Kaihua,et al. Characteristics of nanosecond-pulse dielectric barrier discharge in atmospheric air[J]. Proceedings of the CSEE,2010,30(7): 111-117.
[12] 黄伟民,邵 涛,张东东,等. 小型高压重复频率微秒电源及其放电应用[J]. 强 激光与粒子束,2014,26(4):272-278. HUANG Weimin,SHAO Tao,ZHANG Dongdong,et al. A compact high voltage microsecond pulse power supply and its discharge application[J]. High Power Laser and Particle Beams,2014,26(4): 272-278.
[13] FANG Z,SHI Y,LIU F,et al. Compact microsecond pulsed power generator driven by solar energy for dielectric barrier discharge applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2019,26(2): 390-396.
[14] 周 杨,姜 慧,章 程,等. 纳秒和微秒脉冲激励表面介质阻挡放电特性对比 [J]. 高电压技术,2014,40(10):3091-3097. ZHOU Yang,JIANG Hui,ZHANG Cheng,et al. Comparison of discharge characteristics in surface dielectric barrier discharge driven by nanosecond and microsecond pulsed powers[J]. High Voltage Engineering, 2014,40(10): 3091-3097.
[15] 高军伟,孙岩洲,裴 植,等. DBD中表相放电对电荷及能量传递的影响[J]. 高 压电器,2018,54(9):32-37. GAO Junwei,SUN Yanzhou,PEI Zhi,et al. Surface discharge effect on charge and energy transfer in DBD[J]. High Voltage Apparatus, 2018,54(9): 32-37.
[16] 郝玲艳,李清泉. 纳秒脉冲电源作用下沿面介质阻挡放电等离子体特性参数 的仿真计算[J]. 高压电器,2017,53(4):53-59. HAO Lingyan,LI Qingquan. Simulation calculation of the surface dielectric barrier discharge characteristic parameters under nanosecond[J]. High Voltage Apparatus,2018,53(4): 53-59.
[17] FANG Z,HAO L,HAO Y,et al. Polyethylene terephthalate surface modification by filamentary and homogeneous dielectric barrier discharges in air [J]. IEEE Transactions on Plasma Science,2009,37(5): 659-667.
[18] 章 程,邵 涛,严 萍. 纳秒脉冲介质阻挡放电在聚合物绝缘材料表面改性中 的应用[J]. 绝缘材料,2014(2):1-7. ZHANG Cheng,SHAO Tao,YAN Ping. Application of nanosecond pulse dielectric barrier discharge in surface modification of polymer insulating materials[J]. Insulating Materials,2014(2):1-7
[19] LIU F,HUANG G,GANGULY B. Plasma excitation dependence on voltage slew rates in 10-200 Torr argon-nitrogen gas mixture DBD[J]. Plasma Sources Science & Technology,2010,19(19): 045017.
[20] 马云飞,章 程,牛宗涛,等. 微秒和纳秒脉冲激发介质阻挡放电传输电荷特性 对比[J]. 高电压技术,2015,41(9):2979-2987. MA Yunfei,ZHANG Cheng,NIU Zongtao, et al. Comparison for characteristics of transported charges in dielectric barrier discharge driven by microsecond and nanosecond pulsed powers[J]. High Voltage Engineering,2015,41(9),2979-2987.
[21] LIU S,NEIGER M. Electrical modelling of homogeneous dielectric barrier discharges under an arbitrary excitation voltage[J]. Journal of Physics D Applied Physics,2003,36(24): 3144.
[22] PAL U N,SHARMA A K,SONI J S,et al. Electrical modelling approach for discharge analysis of a coaxial DBD tube filled with argon[J]. Journal of Physics D Applied Physics,2009,42(4): 045213.
[23] 史曜炜,周若瑜,崔行磊,等. 不同电源激励下共面介质阻挡放电特性实验[J]. 电工技术学报,2018,33(22): 5371-5380. SHI Yaowei,ZHOU Ruoyu,CUI Xinglei,et al. Experimental investigation on characteristics of copolanar dielectric barrier discharge driven by different power supplies[J]. Transactions of China Electrotechnical Society,2018,33(22): 5371-5380.
[24] 戴振宇,阮氏凤,周晓燕. 冷等离子体处理对实木复合地板基材胶合性能的影响 [J]. 林业科技开发,2015,29(1):59-63. DAI Zhenyu,RUAN Shifeng,ZHOU Xiaoyan. Influences of cold plasma treatment on bonding properties of core layer of engineerd flooring[J]. China Forestry Science and Technology,2015,29(1),59-63.
[25] 马 伟,郭明辉,龚新超,等. 射流等离子体处理对热处理材漆膜附着力的影响 [J]. 林业工程学报,2018,3(3):149-154. MA Wei,GUO Minghui,GONG Xinchao,et al. Effect of N2 plasma treatment on properties of thermal-treated wood[J]. Journal of Forestry Engineering,2018,3(3): 149-154.

备注/Memo

备注/Memo:
收稿日期:2019-06-17; 修回日期:2019-08-21 基金项目:国家自然科学基金(51777091)。 Project Supported by National Natural Science Foundation of China(51777091).李雪林(1978—),男,硕士,讲师,主要从事电气设备诊断、高电压技术、电机与智能控制方 面的研究。 刘 峰(1981—),男,博士,副教授,主要从事放电等离子体技术及应用方面的研究。 方 志(1975—),男,博士,教授,主要从事气体放电等离子体技术及应用、高电压技术方面 的研究(通讯作者)。
更新日期/Last Update: 2019-09-10