[1]吴 雄,李鹏虎,胡 虔,等.聚合物水泥混凝土输电管道的力学仿真[J].高压电器,2019,55(09):171-178.[doi:10.13296/j.1001-1609.hva.2019.09.023 ]
 WU Xiong,LI Penghu,HU Qian,et al.Mechanical Simulation of Polymer Cement Concrete Insulated Power Transmission Pipeline[J].High Voltage Apparatus,2019,55(09):171-178.[doi:10.13296/j.1001-1609.hva.2019.09.023 ]
点击复制

聚合物水泥混凝土输电管道的力学仿真()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年09期
页码:
171-178
栏目:
研究与分析
出版日期:
2019-09-30

文章信息/Info

Title:
Mechanical Simulation of Polymer Cement Concrete Insulated Power Transmission Pipeline
作者:
吴 雄1 李鹏虎2 胡 虔1 陈轩恕1 张 旭2 李建英2
(1. 国网电力科学研究院武汉南瑞有限责任公司, 武汉 430074; 2. 西安交通大学电力设 备电气绝缘国家重点实验室, 西安 710049)
Author(s):
WU Xiong1 LI Penghu2 HU Qian1 CHEN Xuanshu1 ZHANG Xu2 LI Jianying2
(1. Wuhan NARI Limited Liability Company, State Grid Electric Power Research Institute, Wuhan 430074, China; 2. State Key Laboratory of Power Equipment and Electrical Insulation, Xi’an Jiaotong University, Xi’an 710049, China)
关键词:
输电管道 聚合物水泥混凝土 热应力 电动力 有限元方法
Keywords:
power transmission pipeline polymer cement concrete thermal stress electromagnetic force finite element method
DOI:
10.13296/j.1001-1609.hva.2019.09.023
摘要:
文中基于有限元仿真软件Ansys,对聚合物水泥混凝土输电管道在实际运行中的力学问 题进行了仿真研究,仿真所需参数以生产厂家的实际产品为准。首先计算了输电管道在正常工 作时的温度分布与热应力分布,然后进一步研究了输电管道结构和绝缘材料特性对温度和热应 力的影响。结果表明:增大导体横截面积可以有效降低温度和热应力;在保证绝缘材料电阻率 足够高的前提下,增大材料的热导率也有显著效果;此外,减小材料的弹性模量也可以有效降 低热应力,其他参数的影响则较为复杂。最后分别计算了三相输电管道在稳态和短路时的电动 力。短路电动力大约为稳态时的200~400倍,严重威胁输电管道的安全稳定运行。文中对输电 管道的结构设计和绝缘材料选用具有重要指导意义。
Abstract:
The finite element simulation software Ansys is employed to simulate and analyze the mechanical problems of polymer cement concrete insulated power transmission pipeline in service. The parameters in the simulation are coincident with a real product. The temperature and thermal stress distributions of the pipeline in normal condition are calculated firstly. Then the effects of the pipeline structure and the performance of the insulating material on the temperature and thermal stress are analyzed. The results show that the temperature and thermal stress can be reduced effectively by increasing the cross-section area of conductor. On the premise of ensuring large enough resistivity of the insulating material,the temperature and thermal stress can also be obviously reduced with the increase in the thermal conductivity. Besides, thermal stress can be reduced by decreasing the elastic modulus of material. However,the effects of other parameters are complex. In addition, the electromagnetic forces of a three-phase power transmission pipeline in both steady and short-circuit conditions are calculated, and the result indicates that the short-circuit force is approximately 200~400 times of the steady force, which seriously threatens the safety and stability of the pipeline. This study may facilitate structure design and insulating material selection of power transmission pipeline.

参考文献/References:

[1] 杜伯学,马宗乐,霍振星,等. 电力电缆技术的发展与研究动向[J]. 高压电器,2010, 46(7):100-104. DU Boxue,MA Zongle,HUO Zhenxing,et al. Recent research status of techniques for power cables[J]. High Voltage Apparatus,2010,46(7): 100-104.
[2] 李 艳. 高压XLPE电缆绝缘检测及评估系统设计与实现[D]. 上海:上海交通大学, 2009. LI Yan. Design and realization of insulation monitoring and evaluation system for high voltage XLPE cables[D]. Shanghai: Shanghai Jiaotong University, 2009.
[3] 刘振亚. 全球能源互联网[M]. 北京:中国电力出版社,2015:176-183. LIU Zhenya. Global energy interconnection[M]. Beijing: China Electric Power Press, 2015: 176-183.
[4] 梁旭明,邢照亮,曹 镇,等. 新型管道输电用绝缘材料电气性能测试与探究[J]. 智能电网,2016,4(1):1-6. LIANG Xuming,XING Zhaoliang,CAO Zhen,et al. Measurement and research of electrical properties of new insulating material of pipeline transmission[J]. Smart Grid,2016,4(1): 1-6.
[5] 刘 翔. 高分子绝缘材料[J]. 黑龙江科技信息,2010(27):30. LIU Xiang. Polymer insulating materials[J]. Heilongjiang Science and Technology Information ,2010(27): 30.
[6] 游纯子. 无机聚合物水泥混凝土温度-应力试验研究[D]. 武汉:武汉理工大学, 2014. YOU Chunzi. Experimental research on temperature stress of inorganic polymer concrete[D]. Wuhan: Wuhan University of Technology,2014.
[7] 冯雨松. 关于聚合物水泥混凝土的分析[J]. 工业建设,2007(37):983-985. FENG Yusong. Analysis of polymer cement concrete[J]. Industrial Construction,2007 (37): 983-985.
[8] 赵文缙. 新型混凝土及其施工工艺[M]. 北京:中国建筑工业出版社,1986. ZHAO Wenjin. New concrete and its construction technique[M]. Beijing: China Architecture & Building Press,1986.
[9] HEWLETT P, RIXOM R. Super plasticized concrete[J]. Journal of the American Concrete Institute,1997(74): 5.
[10] KAWAGUCHI T,NAKANE S. Investigations on determining thermal stress in massive concrete structure[J]. Materials Journal,1996,93(1): 96-101.
[11] 李 岩. 大型电力变压器线圈电动力和局部过热问题研究[D]. 沈阳:沈阳工业大 学,1995. LI Yan. Research on the electromagnetic force and local overheating in large power transformers[D]. Shenyang: Shenyang University of Technology,1995.
[12] 王东林. 大型变压器绕组短路电动力的计算与分析[D]. 北京:华北电力大学, 2012. WANG Donglin. Calculation and analysis on short-circuit electromagnetic force of large transformer winding[D]. Beijing: North China Electric Power University,2012.
[13] 孙 昕,李 岩,李洪奎. 变压器箔式绕组的短路电磁力计算[J]. 变压器,2010 ,47(12):1-4. SUN Xin,LI Yan,LI Hongkui. Calculation of short circuit electromagnetic force of foil winding in transformer[J]. Transformer,2010,47 (12): 1-4.
[14] 闫振华,马 波,马飞越,等. 220 kV电力变压器短路动力学性能分析[J]. 高压 电器,2014,50(3):79-83. YAN Zhenhua,MA Bo,MA Feiyue,et al. Dynamic performance analysis of winding for 220 kV power transformer with short circuit [J]. High Voltage Apparatus,2014,50(3): 79-83.
[15] 吴彦霖,谭向宇,马 仪,等. 电场分布以及匝数偏差暂态电动力对干式空心并联 电抗器影响的研究[J]. 高压电器,2016,52(10):99-107. WU Yanlin,TAN Xiangyu,MA Yi ,et al. Study of the influence of electric field distribution and turns deviation transient electrodynamic force on dry-type air-core shunt reactor[J]. High Voltage Apparatus,2016,52(10): 99-107.
[16] 金维芳. 电介质物理学[M]. 北京:机械工业出版社,1997. JIN Weifang. Dielectric physics[M]. Beijing: China Machine Press,1997.
[17] 张 智,张琳琳. 高温高产气井自由套管热应力研究[J]. 安全与环境学报,2015 ,15(4):98-102. ZHANG Zhi,ZHANG Linlin. Thermal stress model for the free- casing section to be used for high-temperature and high-yield gas wells[J]. Journal of Safety and Environment,2015,15(4): 98-102.
[18] 刘 莹,胡育勇,任奇锋,等. 基于Ansys汽车盘式制动器温度场和热应力数值模 拟[J]. 南昌大学学报(工科版),2013,35(3):276-280. LIU Ying,HU Yuyong,REN Qifeng ,et al. Simulation of the temperature field and thermal stress for automotive disc brake based on Ansys[J]. Journal of Nanchang University (Engineering & Technology),2013,35(3): 276-280.
[19] 冯慈璋,马西奎. 工程电磁场导论[M]. 北京:高等教育出版社,2000. FENG Cizhang,MA Xikui. Introduction of engineering electromagnetic field[M]. Beijing: Higher Education Press,2000.
[20] 王锡凡. 电气工程基础 [M]. 第二版. 西安:西安交通大学出版社,2009. WANG Xifan. Foundation of electrical engineering[M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press,2009.

备注/Memo

备注/Memo:
收稿日期:2019-01-11; 修回日期:2019-03-14吴 雄(1982—),男,博士,高级工程师,主要从事电力新材料及绝缘高分子复合材料应用技 术研究。
更新日期/Last Update: 2019-09-10