[1]何 清,阮 羚,罗 维,等.配电变压器中植物绝缘油直接替换矿物绝缘油温度场仿真 计算及现场温升试验分析[J].高压电器,2019,55(09):200-207.[doi:10.13296/j.1001-1609.hva.2019.09.027]
 HE Qing,RUAN Ling,LUO Wei,et al.Simulation Analysis and On-site Temperature Rise Test for Studying Mineral Insulating Oil Directly Replaced by Vegetable Insulating Oil in Distribution Transformer[J].High Voltage Apparatus,2019,55(09):200-207.[doi:10.13296/j.1001-1609.hva.2019.09.027]
点击复制

配电变压器中植物绝缘油直接替换矿物绝缘油温度场仿真 计算及现场温升试验分析()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年09期
页码:
200-207
栏目:
研究与分析
出版日期:
2019-09-10

文章信息/Info

Title:
Simulation Analysis and On-site Temperature Rise Test for Studying Mineral Insulating Oil Directly Replaced by Vegetable Insulating Oil in Distribution Transformer
作者:
何 清 阮 羚 罗 维 王瑞珍 熊 虎
(国网湖北省电力公司电力科学研究院, 武汉 430077)
Author(s):
HE Qing RUAN Ling LUO Wei WANG Ruizheng XIONG Hu
(State Grid Hubei Electric Power Research Institute, Wuhan 430077, China)
关键词:
10 kV植物绝缘油变压器 直接替换 模拟仿真 现场试验 对比分析
Keywords:
10 kV vegetable insulating oil transformer directly replace simulation field test comparative analysis
DOI:
10.13296/j.1001-1609.hva.2019.09.027
摘要:
为研究10 kV配电变压器中,在不改变原矿物绝缘油变压器结构设计和制造工艺条件下 ,直接用植物绝缘油替换矿物绝缘油后,对变压器温升特性影响。特制造两台结构设计和加工 工艺完全相同的S11-M-315 kVA/10 kV配电变压器,分别填充克拉玛依25号矿物绝缘油和FR3植 物绝缘油,通过Ansys CFX仿真软件对两台配电变压器进行油流和温度的模拟仿真,得到两台 变压器在模拟温升实验中的差异,并通过对两台变压器实际现场温升试验,分析比对植物绝缘 油直接替换矿物绝缘油后对变压器温升性能的实际影响,并通过植物绝缘油的理化性能对实验 数据进行分析。研究表明,对于10 kV配电变压器,在不改变原矿物绝缘油变压器设计结构与 制造工艺条件下,用FR3植物绝缘油直接替换25号矿物绝缘油,植物绝缘油变压器整体温升均 比矿物绝缘油变压器高约3~6 K,但仍满足GB 1094.2—2013《电力变压器第2部分:液浸式变 压器的温升》标准对温升限值要求;在同等温升条件下,植物绝缘油在变压器中的油流速度明 显比矿物绝缘油慢,在本事例中仅为矿物绝油流速的1/2,这是导致其温升偏高的原因。在变 压器油流速度和温度热点分布方面,植物绝缘油变压器与矿物绝缘油具有相同趋势,两台变压 器温度最高点均集中在中间绕组的上部,且位于外侧的高压绕组比位于内侧的低压绕组温度高 ;两台变压器油流速度最大值均出现在上部绕组之间。现场温升试验和模拟仿真均相互验证了 以上结论。最后,根据研究结论,分别提出降低植物绝缘油配电变压器温升和提高温升限值的 方法。
Abstract:
In order to study the 10 kV distribution transformer, the effect of the vegetable insulating oil on the temperature rise characteristics of the transformer was replaced by the vegetable insulating oil without changing the structural design and manufacturing process of the original mineral insulating oil transformer. The S11-M-315 kVA /10 kV distribution transformer, which is exactly the same in the design and processing process, is used to fill the Karamay No. 25 mineral insulating oil and FR3 vegetable insulating oil respectively. The two transformers are oiled by Ansys CFX simulation software flow and temperature simulation of the two transformers in the simulation of the temperature rise in the experimental differences, and through the actual temperature of two transformers on-site test, compared with the vegetable insulation oil directly replace the mineral insulation oil after the transformer temperature rise performance. And the physical and chemical properties of vegetable insulating oil are used to analyze the experimental data. The results show that, for the 10 kV distribution transformer, without changing the original mineral insulating oil transformer design structure and manufacturing process conditions, with FR3 vegetable insulating oil directly replace No.25 mineral insulating oil, vegetable insulation oil transformer overall temperature rise than mineral insulating oil. The transformer is about 3~6 K, but still satisfy the GB 1094.2—2013 “power transformer part 2: liquid immersion transformer temperature rise” standard temperature limit requirements; in the same temperature conditions, the vegetable insulation oil in the transformer, the oil flow rate is significantly slower than mineral insulating oil, in this case only 1/2 of the mineral oil flow rate, which is the reason for its high temperature rise. In the transformer oil flow velocity and temperature hot spot distribution, the vegetable insulation oil transformer and mineral insulating oil has the same trend, the two transformer temperature points are concentrated in the upper part of the middle, and the outer side of the high-voltage winding temperature higher than the inside of the low-voltage winding temperature; two transformer oil flow velocity maximum appears between the upper windings. Both the field temperature rise test and the simulation verify the above conclusions. Finally, according to the conclusion of the study, the ways to reduce the temperature rise and increase the temperature rise limit of the vegetable insulating oil distribution transformer are put forward respectively.

参考文献/References:

[1] 项 阳. 浅谈植物绝缘油变压器[J]. 变压器,2014,51(12):23-27. XIANG Yang. Brief discussion on vegetable insulating oil transformer[J]. Transformer,2014,51 (12):23-27.
[2] 蔡胜伟,陈江波,周翠娟,等. 植物绝缘油-纸复合绝缘热老化特性研究[J]. 绝缘 材料,2015,48(2):56-60. CAI Shengwei,CHEN Jianbo,ZHOU Cuijuan,et. Study on thermal ageing characteristics of vegetable insulating oil-paper compound insulation[J]. Insulating Materials 2015,48(2):56-60.
[3] 李 剑,党剑亮,杨丽君,等. 三种植物绝缘油的理化与电气性能的比较[J]. 重 庆大学学报(自然科学版),2007,30(9):42-45. LI Jia,DANG Jianliang,YANG Lijun,et al. Comparison on physical and chemical characteristics and electric properties of three types of vegetable insulating oil[J]. Journal of Chongqing University (Natural Science Edition),2007,30(9):42-45.
[4] 李晓虎,李 剑,孙才新,等. 植物油中提取的环保液体绝缘材料[J]. 重庆大学 学报(自然科学版),2005,28(1):36-41. LI Xiaohu,LI Jian,SUN Caixin,et al. Preparation of environmental friendly insulating materials from vegetable oils[J]. Journal of Chongqing University(Natural Science Edition),2005,28(1): 36-41.
[5] 李晓虎. 植物绝缘油理化及电气性能的研究[D]. 重庆:重庆大学,2006:2-4. LI Xiaohu. Research on physical-chemical and electric properties of vegetable oil based dielectric liquid[D]. Chongqing: Chongqing University,2006: 2-4.
[6] 韦 玮,李 鑫,徐晓刚,等. 基于Fluent 的植物绝缘油配电变压器温度场有限 元仿真分析[J]. 广东电力,2016,29(10):121-126. WEI Wei,LI Xin,XU Xiaogang,et al. Finite element simulation for temperature field of vegetable insulation oil distribution transformer based on fluent[J]. Guangdong Electric Power,2016,29 (10):121-126.
[7] 变压器类产品型号编制方法:JB/T 3837—2010[S]. 2010. Identification method of transformer’s product type:JB/T 3837—2010[S]. 2010.
[8] 油浸式电力变压器技术参数和要求:GB/T 6451—2015[S]. 2015. Specification and technical requirements for oil-immersed power transformers:GB/T 6451—2015 [S]. 2015.
[9] 电力变压器 第2部分:液浸式变压器的温升:GB 1094.2—2013[S]. 2013. Power transformers—Part 2: Temperature rise for liquid-immersed transformers:GB 1094.2 —2013[S]. 2013.
[10] 汪德华,杨 春,王革鹏,等. 基于Fluent的超高压变压器二维温度场分析[J]. 高压电器,2015,51(6):161-165. WANG Dehua,YANG Chun,WANG Gepeng,et al. Analysis of two-dimensional temperature field in ultra-high voltage transformer based on fluent[J].High Voltage Apparatus,2015,51(6):161-165
[11] 温 波,刘 爽,冯加奇,等. 油浸式电力变压器绕组温度场的二维仿真分析[J] .变压器,2009,46(9):35-38. WEN Bo,LIU Shuang,FENG Jiaqi,et al. Two dimensional analysis of winding temperature field of oil-immersed power transformer[J]. Transformer,2009,46(9):35-38.
[12] 张海燕,储晨昀,李元媛. 变压器温度场的有限元分析[J].变压器,2014,48 (3):25-28. ZHANG Haiyan,CHU Chenyun,LI Yuanyuan. Finite element analysis of temperature field in transformer[J]. 2014,48(3):25-28.
[13] ALLAHBAKHSHI M,AKBARI M. Heat analysis of the power transformer bushings using the finite element method[J]. Applied Thermal Engineering,2016, 100(5):714-720.
[14] TAGHIKHANI M A. ONAN power transformer heat transfer modeling[J]. International Journal of Energy Science,2011,1(3):176-179.
[15] 廖才波,阮江军,刘 超,等. 油浸式变压器三维电磁-流体-温度场耦合分析方 法[J].电力自动化设备,2015,35(9):150-155. LIAO Caibo,RUAN Jiangjun,LIU Chao,et al. Comprehensive analysis of 3-D Electromagnetic-fluid-thermal fields of oil- immersed transformer[J]. Electric Power Automation Equipment,2015,35(9):150-155.
[16] 薛 飞,陈 炯,周健聪,等. 基于Ansys软件的油浸式变压器温度场有限元仿真 计算[J].上海电力学院学报,2015,31(2):113-116. XUE Fei,CHEN Jiong,ZHOU Jiancong ,et al. Analysis of the finite element of oil-immersed transformer temperature field based on Anays software[J]. Journal of Shanghai University of Electric Power,2015,31(2):113-116.
[17] 宋 友,阮江军,王珊珊,等. 油浸式变压器绝缘油热特性的仿真分析[J].绝缘 材料,2015,48(4):21-24. SONG You,RUAN Jiangjun,WANG Shanshan,et al. Simulation analysis of thermal property of insulation oil for oil-immersed transformer[J]. Insulating Materials,2015,48(4):21-24.
[18] 保定天威保变电气股分有限公司[M]. 变压器试验技术[M]. 北京:机械工业出版社 ,2003. Baoding Tianwei Protect Share Variable Electric Co., Ltd. Transformer test technology[M]. Beijing: Mechanical Industry Press,2003.
[19] 电力变压器 第1部分:总则:GB 1094.1—2013[S]. 2013. Power transformers- Part 1:General:GB 1094.1—2013[S]. 2013.
[20] 电气设备中使用的天然(植物油)酯液体的规范:ASTM D6871—2003[S]. 2003. Standard specification for natural (vegetable oil) ester fluids used in electrical apparatus:ASTM D6871—2003[S]. 2003.
[21] 李 剑,姚舒瀚,杜 斌,等.植物绝缘油及其应用研究关键问题分析与展望[J]. 高电压技术,2015,41(2):353-362. LI Jian,YAO Shuhan,DU Bin,et al.Analysis to principle problems and future prospect of research on vegetable insulating oils and their applications[J]. High Voltage Engineering,2015,41(2):353-362.
[22] 韩金华,陈 奎,项 阳,等. 一种 35 kV 环保新型植物绝缘油变压器[J]. 变 压器,2014,51(11):18-21. HAN Jinhua,CHEN Kui,XIANG Yang,et al. A new environmental protection type vegetable insulation oil transformer[J]. Transformer ,2014,51(11): 18-21.
[23] 韩金华,韩筛根,王思宝,等.一种基于高燃点植物绝缘油变压器设计方法[J]. 变压器,2014,51(8):38-42. HAN Jinhua,HAN Shangen,WANG Sibao,et al. Transformer design method based on high ignition point vegetable insulation oil[J]. Transformer,2014,51(8):38-42.

备注/Memo

备注/Memo:
收稿日期:2019-01-19; 修回日期:2019-03-24何 清(1978—),女,硕士,高级工程师,主要从事绝缘油检测技术研究以及油浸式高压电气 设备的故障诊断与分析工作。
更新日期/Last Update: 2019-09-10