[1]邓王博,王海云,常喜强,等.大规模双馈风电场次同步振荡的成因分析[J].高压电器,2019,55(09):215-221.[doi:10.13296/j.1001-1609.hva.2019.09.029]
 DENG Wangbo,WANG Haiyun,CHANG Xiqiang,et al.Cause Analysis on Subsynchronous Oscillation in Large-scale Doubly-fed Wind Farm[J].High Voltage Apparatus,2019,55(09):215-221.[doi:10.13296/j.1001-1609.hva.2019.09.029]
点击复制

大规模双馈风电场次同步振荡的成因分析()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年09期
页码:
215-221
栏目:
研究与分析
出版日期:
2019-09-10

文章信息/Info

Title:
Cause Analysis on Subsynchronous Oscillation in Large-scale Doubly-fed Wind Farm
作者:
邓王博12 王海云1 常喜强3 郭小龙3
(1. 新疆大学电气工程学院, 乌鲁木齐 830047; 2. 国网陕西省电力公司检修公司, 西 安 710000; 3. 新疆省电力调度 控制中心, 乌鲁木齐 830063)
Author(s):
DENG Wangbo12 WANG Haiyun1 CHANG Xiqiang3 GUO Xiaolong3
(1. School of Electric Engineering, Xinjiang University, Urumqi 830047, China ; 2. Maintenance Company of Shaanxi Electric Power Company, Xi’an 710000, China; 3. Xinjiang Electric Power Dispatching Control Eenter, Urumqi 830063, China)
关键词:
双馈风电场 次同步振荡 风机出力 无功功率
Keywords:
doubly-fed wind farm subsynchronous oscillation wind turbine output reactive power
DOI:
10.13296/j.1001-1609.hva.2019.09.029
摘要:
为了探究大规模双馈风电场在无串补情况下发生次同步振荡现象的原因,文中在 MATLAB/SIMLINK软件搭建了双馈风机无串补线路并网模型,结合时域仿真法研究了风机出力、 RSC控制器参数、无功外环控制器参数和传输线路长度与次同步振荡的关系。结果表明:风速 越大,并网台数越多,即风机出力越大,则更易发生次同步振荡。单独改变RSC内环电流控制 器的Ki参数,不会产生系统振荡,然而调节Kp参数太大,系统更易发生次同步振荡。外环无功 控制器比例系数Kp过大,控制器参数过于灵敏,会造成无功功率的超调,系统更易发生次同步 振荡。传输线路的大小只影响电压波动的范围,不会造成系统发生次同步振荡。
Abstract:
To explore the reason why subsynchronous oscillation occursinlarge- scale doubly-fed wind farm without series compensation,the software MATLAB/Simulink is employed to build a grid model of doublely-fed wind turbinewith series compensation.The relations of the subsynchronous oscillation with the wind turbine output,the parameters of RSC controller and outer-loop reactive powercontroller, and the length of transmission line are investigatedbased on the time-domain simulation method. The results show that with the increase in the wind speed and turbine number in grid,the wind turbine output becomes larger,hence the subsynchronous oscillation is prone to occur. Only changing the Ki parameters of the RSC inner-loop current controller does not result in system oscillation, but if the Kp change is too large,the subsynchronous oscillation may happen more likely. If theproportional coefficient Kp of the outer-loop reactive power controller is too large or the parameters of the controller are too sensitive,the reactive power would be overshot and subsynchronous oscillation would happen more easily. The size of the transmission line only affects the range of voltage fluctuation,but will not cause the system’ssubsynchronous oscillation.

参考文献/References:

[1] 余贻鑫. 电力系统稳定性理论与方法[M]. 北京:科学出版社, 1999. YU Yixin. Power system stability theory and method[M]. Beijing:Science Press,1999.
[2] 倪以信. 动态电力系统的理论和分析[M]. 北京:清华大学出版社, 2002. NI Yixin. Theory and analysis of dynamic power system[M]. Beijing:Tsinghua University Press,2002.
[3] 李光琦. 电力系统暂态分析[M]. 北京:中国电力出版社, 2007. LI Guangqi. Power system transient analysis[M]. Beijing:China Electric Power Press,2007.
[4] 程时杰, 曹一家, 江全元. 电力系统次同步振荡的理论与方法[M]. 北京:科学出 版社, 2009. CHENG Shijie,CAO Yijia,JIANG Quanyuan. Theory and method of subsynchronous oscillation in power system[M]. Beijing:Science Press,2009.
[5] 谢小荣,王路平,贺静波,等. 电力系统次同步谐振/振荡的形态分析[J]. 电网技 术,2017,41(4):1043-1049. XIE Xiaorong,WANG Luping,HE Jingbo,et al.Analysis of subsynchronous resonance/oscillation types in power systems[J]. Power System Technology,2017,41(4): 1043-1049.
[6] 肖湘宁,罗 超,廖坤玉. 新能源电力系统次同步振荡问题研究综述[J]. 电工技术 学报,2017,32(6):85-97. XIAO Xiangning,LUO Chao,LIAO Kunyu. Review of the research on subsynchronous oscillation issues in electric power system with renewable energy sources[J]. Transactions of China Electrotechnical Society,2017 ,32(6):85-97.
[7] 王伟胜,张 冲,何国庆,等. 大规模风电场并网系统次同步振荡研究综述[J]. 电 网技术,2017,41(4):1050-1060. WANG Weisheng,ZHANG Chong,HE Guoqing,et al.Overview of research on subsynchronous oscillations in large-scale wind farm integrated system[J]. Power System Technology,2017,41(4): 1050-1060.
[8] 李明节,于 钊,许 涛,等. 新能源并网系统引发的复杂振荡问题及其对策研究 [J]. 电网技术,2017,41(4):1035-1042. LI Mingjie,YU Zhao,XU Tao,et al. Study of complex oscillation caused by renewable energy integration and its solution[J]. Power System Technology,2017,41(4): 1035-1042.
[9] 卢 云.双馈风电场经串补线路并网引起的次同步振荡研究[D]. 北京:华北电力大学 ,2014. LU Yun. Research on subsynchronous oscillation caused by grid-integration of doubly fed wind powergeneration system via series compensated lines[D]. Beijing :North China Electric Power University,2014.
[10] 陆 琴.双馈机组风电场次同步振荡分析及抑制方法[D]. 杭州:浙江理工大学, 2016. LU Qin. Analysis and suppression measures of sub-synchronous oscillation based on doubly-fed induction generator in wind farm[D]. Hangzhou:Zhejiang Sci- Tech University,2016.
[11] 栗 然,卢 云,刘会兰,等. 双馈风电场经串补并网引起次同步振荡机理分析 [J]. 电网技术,2013,37(11):3073-3079. SU Ran,LU Yun,LIU Huilan,et al. Mechanism analysis on subsynchronous oscillation caused by grid-integration of doubly fed wind power generation system via series compensation[J]. Power System Technology, 2013,37(11): 3037-3079.
[12] 董晓亮,谢小荣,杨 煜,等. 双馈风机串补输电系统次同步谐振影响因素及稳定 区域分析[J]. 电网技术,2015,39(1):189-193. DONG Xiaoliang,XIE Xiaorong,YANG Yu ,et al.Impacting factors and stable area analysis of subsynchronous resonance in DFIG based wind farms connected to series-compensated power system[J]. Power System Technology,2015,39(1): 189-193.
[13] 董晓亮,田 旭,张 勇,等. 沽源风电场串补输电系统次同步谐振典型事件及影 响因素分析[J]. 高电压技术,2017,43(1):321-328. DONG Xiaoliang,TIAN Xu,ZHANG Yong ,et al.Practical SSR incidence and influencing factor analysis of DFIG-based series-compensated transmission system in Guyuan farms[J]. High Voltage Engineering,2017,43(1):321-328.
[14] 谢小荣,刘华坤,贺静波,等. 直驱风机风电场与交流电网相互作用引发次同步振 荡的机理与特性分析[J]. 中国电机工程学报,2016,36(9):2366-2372. XIE Xiaorong,LIU Huakun,HE Jingbo,et al. Mechanism and characteristics of subsynchronous oscillation caused by the iteraction between full-converter wind turbines and AC systems[J]. Proceedings of the CSEE,2016,36(9): 2366-2372.
[15] 张建军. 谐波电压传递特性分析研究[J]. 高压电器,2016,52(10):130-134. ZHANG Jianjun.Study of transfer characteristics of harmonic voltage[J]. High Voltage Apparatus,2016,52(10):130-134.
[16] 陈 帆,赵婉雯. 特高压直流无功控制电压选择优化研究[J]. 高压电器,2016, 52(11):29-33. CHEN Fan,ZHAO Wanwen. Optimization of voltage selection for UHVDC reactive power control[J]. High Voltage Apparatus,2016,52(11):29-33.
[17] 乔 和,关紫薇,颜廷武,等. SVG的自适应控制方法研究[J]. 高压电器,2017, 53(1):169-174. QIAO He,GUAN Ziwei,YAN Tingwu,et al.Research on the adaptive control method of SVG[J]. High Voltage Apparatus,2017,53(1):169-174.
[18] 李 晖,马喜平,董开松,等. 大电网末端风力发电系统故障穿越关键技术[J]. 高压电器,2017,53(1):192-196. LI Hui,MA Xiping,DONG Kaisong,et al.Research on fault ride through for wind power system in the terminal of the power grid system [J]. High Voltage Apparatus,2017,53(1):192-196.
[19] 常喜强,赵明君,梁 静,等. 基于风电仿真模型等值的相关讨论[J]. 四川电力 技术,2014(4):31-35. CHANG Xiqiang,ZHAO Mingjun,LIANG Jing,et al. Based on the equivalence of wind power simulation model[J]. Sichuan Electric Power Technology, 2014(4):31-35.
[20] 王承煦,张 源. 风力发电[M]. 北京:中国电力出版社,2002. WANG Chengxu, ZHANG Yuan. Wind power generation[M]. Beijing: China Electric Power Publishing House,2002.
[21] 孙承祥. 双馈型风电机组的风电场建模研究[D]. 北京:华北电力大学,2015. SUN Chengxiang. Research on wind farm modeling of double-fed wind turbine[D]. Beijing :North China Electric Power University,2015.
[22] 崔 峰. 双馈风力发电机及风电场建模仿真研究[D]. 北京:华北电力大学, 2015. CUI Feng.Research on modeling and simulation of double-fed induction generator and wind farm[D]. Beijing:North China Electric Power University,2015.
[23] 卢 锴. 双馈型风电机组运行控制策略及风电场建模研究[D]. 广州:华南理工大 学,2012. LU Kai. Research on control strategy of DFIG and wind farm modeling[D]. Guangzhou:South China University of Technology,2012.
[24] 马相女. 双馈风力发电变流器系统仿真与控制研究[D]. 哈尔滨:哈尔滨理工大学 ,2017. MA Xiangnü. Research on simulation and control of doubly fed wind power converter system[D]. Harbin:Harbin University of Science and Technology,2017.
[25] 刘兴杰,田建设,丁 波,等. 应用MATLAB进行电力系统分析和动态仿真[J]. 电 力自动化设备,2004,24(3):43-45. LIU Xinjie,TIAN Jianshe,DING Bo,et al. Power system analysis and simulation with MATLAB[J]. Electric Power Automation Equipment ,2004,24(3):43-45.

备注/Memo

备注/Memo:
收稿日期:2019-01-03; 修回日期:2019-03-06 基金项目:国家自然科学基金资助项目(51667020)。 Project Supported by National Natural Science Foundation of China(51667020).邓王博(1992—),男,硕士研究生,主要研究方向为无串补输电系统次同步振荡成因分析。 王海云(1973—),女,硕导,主要研究方向为可再生能源发电与并网技术。 常喜强(1976—),男,硕士,高级工程师,主要研究方向为电力系统运行与控。 郭小龙(1981—),男,硕士,高级工程师,主要研究方向为新能源运行与控制。
更新日期/Last Update: 2019-09-10