[1]丁登伟,刘卫东,张紫薇,等.基于超宽频电压测量的1 100 kV GIL绝缘子闪络电压时频特征试验研究[J].高压电器,2020,56(02):1-6.[doi:10.13296/j.1001-1609.hva.2020.02.001]
 DING Dengwei,LIU Weidong,ZHANG Ziwei,et al.Experimental Investigation on Time-frequency Characteristics of Flashover Voltage of 1 100 kV GIL Insulator Based on UWB Voltage Measurement[J].High Voltage Apparatus,2020,56(02):1-6.[doi:10.13296/j.1001-1609.hva.2020.02.001]
点击复制

基于超宽频电压测量的1 100 kV GIL绝缘子闪络电压时频特征试验研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年02期
页码:
1-6
栏目:
研究与分析
出版日期:
2020-02-14

文章信息/Info

Title:
Experimental Investigation on Time-frequency Characteristics of Flashover Voltage of 1 100 kV GIL Insulator Based on UWB Voltage Measurement
作者:
丁登伟1 刘卫东12 张紫薇1 何 良1 袁明虎1 张 晨1
(1. 清华四川能源互联网研究院, 成都 610213; 2. 清华大学电机工程与应用电子技术系电力系统及发电设备控制和仿真国家重点实验室, 北京 100084)
Author(s):
DING Dengwei1 LIU Weidong12 ZHANG Ziwei1 HE Liang1 YUAN Minghu1 ZHANG Chen1
(1. Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610213, China; 2. State Key Lab of Control and Simulation of Power System and Generation Equipments, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)
关键词:
特高压GIL设备 故障精确定位 超宽频电压测量 闪络电压 时频特征
Keywords:
UHV GIL accurate fault location UWB voltage measurement flashover voltage time-frequency characteristics
DOI:
10.13296/j.1001-1609.hva.2020.02.001
摘要:
特高压GIL设备是特高压输电工程的重要组成单元,故障精确定位是缩短GIL设备绝缘击穿故障抢修时间,提高特高压输电可靠性的关键。为满足特高压GIL故障精确定位需求,研究特高压GIL设备内部绝缘击穿时所产生暂态电压的波形时频特征是基础。文中利用真型1 100 kV GIL设备构建试验平台,通过模拟盆式绝缘子表面缺陷诱发GIL设备内部绝缘闪络。采用超宽频带的电压测量系统准确测量盆式绝缘子闪络过程中电压突变,通过分析击穿过程暂态电压波形的时域和频域特征,揭示特高压GIL设备盆式绝缘子闪络的电磁波激发机理。同时还对比分析了不同极性电压下,闪络诱发暂态电压波形时频特征的变化规律。通过试验分析发现,特高压GIL设备盆式绝缘子击穿时暂态电压的上升沿低于110 ns,陡度大于5 kV/ns,激发电磁波的高频分量可达4 MHz。因此通过准确测量击穿电压,可大幅提升电压行波定位的精度,为实现特高压GIL设备10 m级故障精确定位奠定坚实基础。
Abstract:
The ultra-high voltage(UHV)GIL equipment is an important component of the UHV transmission system, and accurate fault location is the key to shorten the repair time of the insulation breakdown fault of GIL equipment and improve the reliability of UHV transmission. In order to meet the requirements of accurate fault location, it is essential to research the time-frequency characteristics of the transient voltage waveform generated during the insulation breakdown of the UHV GIL. In this paper, an experimental platform is arranged based on the true the actual 1 100 kV gas insulated line(GIL), and the surface defect is simulated to induce the flashover along the basin-type Insulator inside the GIL.The ultra-wide band(UWB)voltage measurement system is used to accurately measure the abrupt voltage change during the flashover process of the basin-type insulator. Through analyzing the time domain and frequency domain characteristics of the voltage waveform during the breakdown process, the excitation mechanism of the electromagnetic wave is revealed. Meanwhile, the time-frequency characteristics of voltage waveform in flashover process are compared and analyzed under the different polarity voltages. The experimental analysis shows that the rising edge of the breakdown waveform along the basin-type insulator in the UHV GIL is almost lower than 110 ns, the steepness is greater than 5.6 kV/ns, and the high-frequency component of the excited electromagnetic wave can reach up to 4 MHz. Therefore, by accurately measuring of the breakdown voltage waveform, the accuracy of voltage traveling wave positioning can be greatly improved, laying firm foundation for the accurate 10-meter fault location in the UHV GIL.

参考文献/References:

[1] KUROYANAGI Y,TOYA A,HAYASHI T,et al. Construction of 8 000 A class 275 kV gas insulated transmission line[J]. IEEE Transactions on Power Delivery,1990,5(1):14-20.
[2] MEMITA N,SUZUKI T,ITAKA K,et al. Development and installation of 275 kV SF6 gas-insulated transmission line[J]. IEEE Transactions on Power Apparatus and Systems,1984,103(4):691-698.
[3] HILLERS T. Gas insulated transmission lines(GIL): Ready for the real world[C]//Power Engineering Society Winter Meeting. Singapore:IEEE,2000:575-579.
[4] KOCH H. Gas insulated transmission lines(GIL)[M]. United Kingdom:Wiley-IEEE Press,2012:33-38.
[5] 齐 波,张贵新,李成榕,等. 气体绝缘金属封闭输电线路的研究现状及应用前景[J]. 高电压技术,2015,41(5):1466-1473. QI Bo,ZHANG Guixin,LI Chengrong,et al. Research status and prospect of gas-insulated metal enclosed transmission line[J]. High Voltage Engineering,2015,41(5):1466-1473.
[6] BENATO R,MARIO C D,KOCH H. High-capability applications of long gas-insulated lines in structures[J]. IEEE Transactions on Power Delivery,2007,22(1):619-626.
[7] KOCH H,SCHUETTE A. Gas insulated transmission lines for high power transmission over long distances[J]. Electric Power System Research,1998,44(1):69-74.
[8] 吴泽华,王浩然,田汇冬,等. 特高压GIL三支柱绝缘子结构参数分析与优化[J]. 高电压技术,2018,44(10):3165-3173. WU Zehua,WANG Haoran,TIAN Huidong,et al. Structural parameter analysis and optimization of tri-post insulator on UHVAC GIL[J]. High Voltage Engineering,2018,44(10):3165-3173.
[9] 李红元,陈 禾,吴德贯,等. 用超声波检测法对GIL设备两次局放的诊断与分析[J]. 高压电器,2016,52(2):68-73. LI Hongyuan,CHEN He,WU Deguan,et al. Diagnosis and analysis of two partial discharge in GIL equipment by ultrasonic detection method[J]. High Voltage Apparatus,2016,52(2):68-73.
[10] 黄和燕,吴德贯,夏 辉,等. GIL设备超声波局放信号异常的诊断与分析[J]. 高压电器,2017,53(12):241-246. HUANG Heyan,WU Deguan,XIA Hui,et al. Diagnosis and analysis about ultrasonic PD signal abnormality of GIL equipment[J]. High Voltage Apparatus,2017,53(12):241-246.
[11] KIM C H,KIM H,KO Y H,et al. A novel fault-detection technique of high-impedance arcing faults in transmission lines using the wavelet transform[J]. IEEE Transactions on Power Delivery,2002,17(4):921-928.
[12] 陈 铮,苏进喜,吴欣荣,等. 基于分布参数模型的高压输电线路故障测距算法[J]. 电网技术,2000,24(11):31-33. CHEN Zheng,SU Jinxi,WU Xinrong,et al. Fanlt location algorithm for high voltage transmission line based on distributed parameter[J]. Power System Technology,2000,24(11):31-33.
[13] 夏璐璐,何正友,张 钧. 基于数学形态学原理的行波波头提取算法在铁路电力贯通线测距中的适应性分析[J]. 电网技术,2009,33(8):78-83. XIA Lulu,HE Zhengyou,ZHANG Jun. Adaptability analysis on fault location of continuous railway power line by traveling wave front extraction algorithm based on mathematical morphology[J]. Power System Technology,2009,33(8):78-83.
[14] 张怿宁,徐 敏,刘永浩,等. 考虑波速变化特性的直流输电线路行波故障测距新算法[J]. 电网技术,2011,35(7):227-232. ZHANG Yining,XU Min,LIU Yonghao,et al. A novel travelling wave fault location algorithm for HVDC transmission lines considering variation characteristics of wave speed[J]. Power System Technology,2011,35(7):227-232.
[15] 李 扬,黄 映,成乐祥. 考虑故障时刻与波速选取相配合的行波测距[J]. 电力自动化设备,2010,30(11):44-47. LI Yang,HUANG Ying,CHENG Lexiang. Fault locating with coordination of travelling wave arrival time and velocity[J]. Electric Power Automation Equipment,2010,30(11):44-47.
[16] 邬林勇,何正友,钱清泉. 一种提取行波自然频率的单端故障测距方法[J]. 中国电机工程学报,2008,28(10):69-75. WU Linyong,HE Zhengyou,QIAN Qingquan. A single ended fault location method using traveling wave natural frequency[J]. Proceedings of the CSEE,2008,28(10):69-75.
[17] 郑秀玉,丁坚勇,黄 娜. 输电线路单端故障定位的阻抗-行波组合算法[J]. 电力系统保护与控制,2010,38(6):18-21. ZHENG Xiuyu,DING Jianyong,HUANG Na. Impedance-traveling wave assembled algorithm of one-terminal fault location for transmission lines[J]. Power System Protection and Control,2010,38(6):18-21.
[18] LIEN K Y,LIN S H,LIAO C J,et al. Energy variance criterion and threshold tuning scheme for high impedance fault detection[J]. IEEE Transaction on Power Delivery,1999,14(3):810-817.
[19] FUNABASHI T,OTOGURO H,MIZUMA Y,et al. Digital fault location for high resistance grounded transmission lines[J]. IEEE Transaction on Power Delivery,1998,13(4):80-85.
[20] SONG Y H. Accurate fault location scheme based on neural networks applied to EHV transmission systems[C]//Proceedings of the International Conference on Power System Technology. Beijing:[s. n. ],1994:1028-1031.
[21] 岳功昌,刘卫东,陈维江,等. 气体绝缘开关设备中特快速瞬态过电压的全过程测量方法[J]. 中国电机工程学报,2011,31(31):18-27. YUE Gongchang,LIU Weidong,CHEN Weijiang,et al. Measurement methods of very fast transient overvoltage in gas insulated switchgear with complete process[J]. Proceedings of the CSEE,2011,31(31):18-27.

备注/Memo

备注/Memo:
收稿日期:2019-09-07; 修回日期:2019-11-17基金项目:国家自然科学基金(51977120);四川省重大科技专项(2018GZDZX0043)。Project Supported by National Natural Science Foundation of China Program(51977120);Sichuan Province Major Science and Technology Project(2018GZDZX0043).丁登伟(1985—),男,博士,高级工程师,主要从事智能电力设备状态监测与智能诊断技术研究,包括基于多维物理感知的电力设备状态监测及故障诊断技术,输变电设备全电压和全电流超宽频测量与抑制防护关键技术,以及基于大数据的电力设备风险管控及智能决策关键技术。刘卫东(1961—),男,教授,博士生导师,从事电力设备在线检测和故障诊断方面的研究工作。张紫薇(1988—),女,博士,副研究员,从事电力设备状态评价和故障诊断方面的研究工作。何 良(1987—),男,硕士,高级工程师,研究方向为电力设备状态监测及智能诊断技术。
更新日期/Last Update: 2020-02-14