[1]石 岩,崔博源,陈 允,等.开关电弧非平衡态电导率的研究[J].高压电器,2020,56(02):27-33.[doi:10.13296/j.1001-1609.hva.2020.02.005 ]
 SHI Yan,CUI Boyuan,CHEN Yun,et al.Study on Non-equilibrium State Conductivity of Switching Arc[J].High Voltage Apparatus,2020,56(02):27-33.[doi:10.13296/j.1001-1609.hva.2020.02.005 ]
点击复制

开关电弧非平衡态电导率的研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年02期
页码:
27-33
栏目:
研究与分析
出版日期:
2020-02-14

文章信息/Info

Title:
Study on Non-equilibrium State Conductivity of Switching Arc
作者:
石 岩12 崔博源1 陈 允1 林 莘2 张 进3 钟建英4 吴昱怡1
(1. 中国电力科学研究院有限公司, 北京 100192; 2. 沈阳工业大学电气工程学院, 沈阳 110870; 3. 国家电网公司,北京 100031; 4. 平高集团有限公司, 河南 平顶山 467001)
Author(s):
SHI Yan12 CUI Boyuan1 CHEN Yun1 LIN Xin2 ZHANG Jin3 ZHONG Jianying4 WU Yuyi1
(1. China Electric Power Research Institute, Beijing 100192, China; 2. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China; 3. National Electric Net Ltd., Beijing 100031, China; 4. Pinggao Group Co., Ltd., Henan Pingdingshan 467001, China)
关键词:
SF6等离子体 非平衡态 电子数密度 电导率
Keywords:
SF6 plasma non-equilibrium state electron density conductivity
DOI:
10.13296/j.1001-1609.hva.2020.02.005
摘要:
电弧等离子体电导率是影响电弧能量的关键因素之一。文中从微观角度出发,通过库伦碰撞模型对SF6电弧等离子体内电子温度与重粒子温度进行计算,针对热力学非平衡态特点对Saha方程、Guldberg-Wagge方程进行修正,根据SF6放电时存在的电离、解离平衡计算得出不同压强、不同温度下的电子数密度;改进Spitzer电导率计算模型,得到压强为0.1~1 MPa、温度为300~20 000 K范围内非平衡态双温度SF6电弧等离子体电导率,并在压强为0.6 MPa下与平衡态电弧电导率计算结果进行对比。研究结果表明:当温度为7 000 K时等离子体内部开始出现电子,并随着温度的升高电子密度迅速达到峰值;压强为0.6 MPa下,温度小于10 000 K时,非平衡态双温度等离子体电导率与平衡态等离子体电导率计算结果相差较大,这是由于非平衡态条件下,电子温度与重粒子温度相差很大,不能用单一温度同时表征两种粒子的发展过程。在等离子体内粒子电离不充分时,非平衡态双温度电弧等离子体模型更能够准确描述电弧的动态发展过程。研究结果可应用于滤波器组、电容器组断路器等开断容性小电流的气流场数值计算中。
Abstract:
From the microscopic point of view, the electron temperature and heavy particle temperature in the SF6 arc plasma are calculated with the Coulomb collision model. The Saha equation and the Guldberg-Wagge equation are modified according to the thermodynamic non-equilibrium state characteristics. According to the ionization existing in the SF6 discharge to conduct deionization balance calculation, the electron number density for different pressure and temperature is obtained. The calculation model of Spitzer conductivity is improved to obtain the conductivity of SF6 arc plasma in non-equilibrium state in the condition of 300~20 000 K and 0.1~1 MPa, and the result is compared with the calculated equilibrium state arc conductivity at pressure of 0.6 MPa. It is shown that at 7 000 K electrons begin to appear inside the plasma and the electron density rapidly reaches the peak with the increase of the temperature. When the pressure is 0.6 MPa and the temperature is lower than 10 000 K, the calculation difference of the conductivity between the non-equilibrium dual-temperature plasma and the equilibrium plasma are large because in the non-equilibrium state the electron temperature and the heavy particle temperature are quite different. Therefore, the development of the two different kinds of particles cannot be simultaneously characterized by single temperature. The non-equilibrium dual-temperature arc plasma model can describe the dynamic development of arc more accurately when ionization is insufficient in the plasma. These research results can be applied to the numerical calculation of the airflow field with small breaking current for such as filter-bank and capacitor-bank circuit breakers.

参考文献/References:

[1] 王 亮. SF6断路器开断容性小电流介质恢复特性研究[D]. 沈阳:沈阳工业大学,2014. WANG Liang. Research on dielectric recovery characteristic of small capacitive current in SF6 circuit break[D]. Shenyang:Shenyang University of Technology,2014.
[2] 钟建英. 自能式SF6断路器开断过程的计算与分析[D]. 沈阳:沈阳工业大学,2002. ZHONG Jianying. The interrupting proceess computation and analyses of a self extinguishing type SF6 circuit[D]. Shenyang:Shenyang University of Technology,2002.
[3] 荣命哲,杨 飞,吴 翊,等. 直流断路器电弧研究的新进展[J].电工技术学报,2014,29(1):1-9. RONG Mingzhe,YANG Fei,WU Yi,et al.New developments in switching arc research in DC circuit breaker[J]. Transactions of China Electrotechnical Society,2014,29(1):1-9.
[4] 李和平,陈 熙. 双温度通道电弧等离子体二维数值模拟[J]. 工程热物理学报,2006,27(3):481-483. LI Heping,CHEN Xi.Two-dimensional two-temperature simulation of plasma tube arc[J]. Journal of Engineering Thermophysics,2006, 27(3):481-483.
[5] AMAKAWA T,JENISTA J,HEBERLEIN J,et al.Anodeboundary-layer behaviour in a transferred,high-intensity arc[J]. Journal of Physics D - Applied Physics,1998,31(20):2826-2834.
[6] YANG Guang,HEBERLEIN J.Anode attachment modes and their formation in a high intensity argon arc[J]. Plasma Sources Science and Technology,2007,16(3):529-542.
[7] 王飞鸣,林 莘,徐建源. 高压SF6断路器非平衡态等离子体电弧的熄弧特性[J]. 高电压技术,2014,40(10):3073-3084. WANG Feiming,LIN Xin,XU Jianyuan.Extinction characteristics of non-equilibrium plasma arc in high-voltage SF6 circuit breaker[J]. High Voltage Engineering,2014,40(10):3073-3084.
[8] 高尚惠,孙 煜. 热力学与统计物理学[M]. 北京:高等教育出版社,1980. GAO Shanghui,SUN Yu. Thermodynamics and statistical physics[M]. Bejing:Higher Education Press,1980.
[9] FAUCHAIS P,BOULOSI M I,PFENDER E. Thermal plasmas fundamentals and applications[M]. New York:Plenum,1994.
[10] 荣命哲,刘定新,李 美,等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报,2014,29(6):271-282. RONG Mingzhe,LIU Dingxin,LI Mei,et al.Research status and new progress on the numerical simulation of non-equilibrium plasmas[J]. Transactions of China Electrotechnical Society,2014,29(6):271-282.
[11] BRAND K P,KOPAINSKY J.Particle densities in adecaying SF6 plasma[J]. Applied Physics,1978,16(4):425-432.
[12] BARTLOVA M,COUFAL O.Comparison of some models of reaction kinetics in HV circuit breakers with SF6 after current zero[J]. Journal of Physics D - Applied Physics,2002,35(23):3065-3076.
[13] ADAMEC L,COUFAL O.On kinetics of reactions in HV circuit breakers after current zero[J]. Journal of Physics D - Applied Physics,1999,32(14):1702-1710.
[14] COLL I,CASANOVAS A M,VIAL L,et al.Chemical kinetics modelling of a decaying SF6 arc plasma in the presence of a solid organic insulator,copper,oxygen and water[J]. Journal of Physics D - Applied Physics,2000,33(3):221-229.
[15] COUFAL O,SEZEMSKY P.On the formal correctness of the reaction kinetics model and its solution in HV circuit breakers after current zero[J]. Journal of Physics D - Applied Physics,2001,34(14):2174-2184.
[16] GIRARD R,BELHAOUARI J B,GONZALEZ J J,et al.A twotemperature kinetic model of SF6 plasma[J]. Journal of Physics D - Applied Physics,1999,32(22):2890-2901.
[17] ADAMEC L,COUFAL O.Comments on the computation of the composition of quenching media in HV circuit breakers after current zero[J]. Journal of Physics D-Applied Physics,1997,30(11):1646-1652.
[18] 王海兴,孙素蓉,陈士强. 双温度氦等离子体输运性质计算[J].物理学报,2012,61(19):317-323. WANG Haixing,SUN Surong,CHEN Shiqiang.Calculation of transport coefficients of two-temperature Helium plasmas[J]. Acta Physica Sinica,2012,61(19):317-323.
[19] 王飞鸣. 高压SF6断路器非平衡态电弧机理及开断特性研究[D]. 沈阳:沈阳工业大学,2016. WANG Feiming. Research on mechanism of non-equilibrium plasma arc and breaking characteristics in high-voltage SF6 circuit breakers[D]. Shenyang:Shenyang University of Technology,2016.
[20] GLEIZES A.CHERVY,GONZALE J J. Calculation of a two-temperature plasma composition:Bases and application to SF6[J]. Journal of Physics D - Applied Physics,1999,32(16):2060-2067.
[21] WANG W Z,RONG M Z,YAN J D. The reactive thermal conductivity of thermal equilibrium and nonequilibrium plasmas application to nitrogen[J]. IEEE Transactions on Plasma Science,2012,40(4):980-990.
[22] WANG Weizong,RONG Mingzhe,YAN J D,et al.Thermophysical properties of nitrogen plasmas under thermal equilibrium and non-equilibrium conditions[J]. Physics of Plasmas,2011,18(11):2-19.
[23] GHORUI S,HEBERLEIN J ,PFENDER E.Thermodynamic and transport properties of two-temperature nitrogen-oxygen plasma[J]. Plasma Chemistry and Plasma Processing,2008,28(4):553-582.
[24] RAMSHAW J D.Simple approximation for thermal diffusion in gas mixtures[J]. Journal of Non-Equilibrium Thermodynamics,1996,21(3):233-238.
[25] TANAKA Y,YOKOMIZU Y,ISHIKAWA M,et al.Particle composition of high-pressure SF6 plasma with electron temperature greater than gas temperature[J]. IEEE Transactions on Plasma Science,1997,25(5):991-995.
[26] 庚振新,石 岩,钟建英,等.SF6放电等离子体分解特性的研究[J]. 高压电器,2017,53(4):18-24. GENG Zhenxin,SHI Yan,ZHONG Jianying,et al.Research of the decomposition characteristics of SF6 discharge plasma[J]. High Voltage Apparatus,2017,53(4):18-24.

备注/Memo

备注/Memo:
收稿日期:2019-10-08; 修回日期:2019-12-19基金项目:国家自然科学基金重点项目(51637006);国网公司直流特高压工程专项(GYB11201604850)。Project Supported by National Natural Science Foundation of China(51637006),State Grid UHV DC Project and Major(GYB11201604850).石 岩(1992—),男,硕士,研究方向为高压电器气流场数值计算。崔博源(1981—),男,高级工程师,研究方向为高压开关设备研制及试验技术。
更新日期/Last Update: 2020-02-14