[1]刘丽娟,伍小刚,朱崇铭,等.振荡型有界波模拟器特性阻抗的计算及其影响因素研究[J].高压电器,2020,56(02):128-134,141.[doi:10.13296/j.1001-1609.hva.2020.02.019 ]
 LIU Lijuan,WU Xiaogang,ZHU Chongming,et al.Calculation of the Characteristic Impedance and Analysis of Influencing Factors on Impedance for Oscillatory Bounded-wave Simulator[J].High Voltage Apparatus,2020,56(02):128-134,141.[doi:10.13296/j.1001-1609.hva.2020.02.019 ]
点击复制

振荡型有界波模拟器特性阻抗的计算及其影响因素研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年02期
页码:
128-134,141
栏目:
研究与分析
出版日期:
2020-02-14

文章信息/Info

Title:
Calculation of the Characteristic Impedance and Analysis of Influencing Factors on Impedance for Oscillatory Bounded-wave Simulator
作者:
刘丽娟1 伍小刚2 朱崇铭2 邹 军1
(1. 清华大学电机工程与应用电子技术系电磁场与电磁兼容研究室, 北京 100084; 2.南瑞集团公司智能电网保护和运行控制国家重点实验室, 南京 211106)
Author(s):
LIU Lijuan1 WU Xiaogang2 ZHU Chongming2 ZOU Jun1
(1. Laboratory of Electromagnetic Field and Compatibility, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; 2. State-Key-Laboratory-of-Smart-Grid-Protection-and-Control, NARI-Group-Corporation, Nanjing 211106, China)
关键词:
VFTO 振荡型有界波模拟器 反射系数 特性阻抗
Keywords:
VFTO oscillatory bounded-wave simulator reflection coefficient characteristic impedance
DOI:
10.13296/j.1001-1609.hva.2020.02.019
摘要:
为了研究VFTO对GIS二次设备的影响,需要通过振荡型有界波模拟器对VFTO辐射场进行模拟。模拟器是典型的平板传输线结构,必须保证波的传播路径中特性阻抗连续才能防止发生波的折反射现象,为此需要确定特性阻抗的大小,文中将通过反射系数法对其进行计算。采用CST软件建立振荡型有界波模拟器的模型,在其首端施加上升沿极陡的阶跃信号,对工作空间中心点处的电场波形进行记录,得到入射波与反射波的幅度,根据反射系数与特性阻抗之间的关系可以对特性阻抗的数值进行计算。利用这一方法,分析过渡段长度和电磁场形成装置首末端尺寸对特性阻抗的影响。结果表明,通过反射系数法对特性阻抗进行计算准确度较高并且应用方便,过渡段长度和首末端尺寸均能够对特性阻抗造成影响,过渡段越长,首末端尺寸越小,波的传播路径中阻抗的一致性越好。
Abstract:
To understand the influence of VFTO on secondary equipment of GIS, oscillatory bounded-wave simulator is used to simulate the VFTO radiation field.The simulator has a typical structure of plate transmission line. Continuous characteristic impedance must be ensured in the wave propagation path to prevent the refraction and reflection of wave. Therefore, it is necessary to analyze the characteristic impedance. In this paper, the reflection coefficient method is adopted to calculate the characteristic impedance of the electromagnetic field forming device. A simulation model of the oscillatory bounded-wave simulator is established with the software CST. Applying a step signal to the simulation model, and recording the electric field waveform at the center of the work space, the amplitudes of the incident wave and reflected wave are obtained. According to the relationship between the reflection coefficient and the characteristic impedance, the value of characteristic impedance is calculated. Subsequently, the influences of the structural factors on the impedance are analyzed. The result shows that the reflection coefficient method is highly accurate and easy to be used, and the length of the transition section and the size of both ends of the electromagnetic field forming device affect the magnitude of the characteristic impedance. The longer the transition section or the smaller the size of both ends, the better the impedance consistency in the wave propagation path.

参考文献/References:

[1] 陈维江,颜湘莲,王绍武,等. 气体绝缘开关设备中特快速瞬态过电压研究的新进展[J]. 中国电机工程学报,2011,31(31):1-11. CHEN Weijiang,YAN Xianglian,WANG Shaowu,et al. Recent progress in investigations on very fast transient overvoltage in gas insulated switchgear[J]. Proceedings of the CSEE,2011,31(31):1-11.
[2] 金 青,余 芳,郭 洁,等. 750 kV GIS中快速暂态过电压的研究[J]. 高压电器,2009,45(5):57-60. JIN Qing,YU Fang,GUO Jie,et al. Calculation of VFTO in 750 kV GIS[J]. High Voltage Apparatus,2009,45(5):57-60.
[3] 孙 伟,王 韵,武增尧,等. 500 kV GIS中快速暂态过电压的测量[J]. 高压电器,1998,34(4):11-14. SUN Wei,WANG Yun,WU Zengyao,et al. Measurement of VFTO in 750 kV GIS[J]. High Voltage Apparatus,1998,34(4):11-14.
[4] SEREGELYI J S,KASHYAP S,LOUIE A. Theoretical and experimental investigation of the field dynamics of an EMP simulator[C]//IEEE International Symposium on Electromagnetic Compatibility. Symposium Record. IEEE,1993:465-466.
[5] AHMED S,RAJU D,CHATURVEDI S,et al. Modal analysis for a bounded-wave EMP simulator - Part I: Effect of test object[J]. IEEE Transactions on Electromagnetic Compatibility,2005,47(1):171-182.
[6] 陈庆国,邱毓昌,张乔根,等. GIS中快速暂态过电压的实验室模拟[J]. 高电压技术,2000,26(1):1-2. CHEN Qingguo,QIU Yuchang,ZHANG Qiaogen,et al. Laboratory simulation of very fast transient overvoltage in GIS[J]. High Voltage Engineering,2000,26(1):1-2.
[7] 孙蓓云,周 晏,郑振兴,等. 有界波EMP模拟器脉冲高压源[J]. 强激光与粒子束,2000,12(4):505-508. SUN Beiyun,ZHOU Yan,ZHENG Zhenxing,et al. High voltage pulse source of bounded-wave EMP simulator[J]. High Power Laser and Particle Beams,2000,12(4):505-508.
[8] 张志军. 电磁脉冲对传输线耦合规律的研究[D]. 北京:华北电力大学,2006:34-35. ZHANG Zhijun. Research on the law of electromagnetic pluse coupling to the transmission line[D]. Beijing: North China Electric Power University,2006:34-35.
[9] 孙凤杰,罗学金,李小伟,等. 亚纳秒前沿有界波模拟器传输线设计的理论分析与实验[J]. 强激光与粒子束,2008,20(5):811-814. SUN Fengjie,LUO Xuejin,LI Xiaowei,et al. Theoretical analysis and experiment on design of subnanosecond bounded-wave simulator[J]. High Power Laser and Particle Beams,2008,20(5):811-814.
[10] 马如坡,石立华,张 祥,等. 椭圆弧型过渡段有界波模拟器[J]. 强激光与粒子束,2013,25(1):133-137. MA Rupo,SHI Lihua,ZHANG Xiang,et al. Bounded-wave simulator with elliptical arc transition section[J]. High Power Laser and Particle Beams,2013,25(1):133-137.
[11] 谢彦召,相 辉,聂 鑫,等. 不对称结构的分布式负载有界波电磁脉冲模拟器[J]. 强激光与粒子束,2006,18(10):1669-1672. XIE Yanzhao,XIANG Hui,NIE Xin,et al. Bounded-ave electromagnetic pulse simulator with distributed load and asymmetric structure[J]. High Power Laser and Particle Beams,2006,18(10):1669-1672.
[12] 万长华. 开放平板线的特性阻抗[J]. 电子科学学刊,1989,11(3):320-323. WAN Changhua. Characteristic impedance of the open-plate transmission line[J]. Journal of Electronics,1989,11(3):320-323.
[13] 潘晓东,魏光辉. 有界波模拟器终端负载设计研究[J]. 微波学报,2007,23(2):63-66. PAN Xiaodong,WEI Guanghui. Reasearch on teminal load design of bounded-wave simulator[J]. Journal of Microwaves,2007,23(2):63-66.
[14] 黄志洵,贺 涛. 横电磁传输室和吉赫横电磁室特性阻抗的准静态分析与计算[J]. 计量学报,1994, 15(3):167-174. HUANG Zhixun,HE Tao. Quasi-static analysis for characteristic impedance of transverse electromagnetic transmission room and geeh’s rransverse electromagnetic room[J]. Acta Metrologica Sinica,1994,15(3): 167-174.
[15] 王中方,张乔根,邱毓昌. 快速暂态过电压的模拟及测量[J]. 高压电器,1999,35(1):16-19. WANG Zhongfang,ZHANG Qiaogen,QIU Yuchang. Simulation and measurement of very fast transient overvoltage[J]. High Voltage Apparatus,1999,35(1):16-19.
[16] 杜雷鸣,谢彦召,王绍飞. 平行板传输线特性阻抗仿真计算及解析修正[J]. 强激光与粒子束,2015,27(8):160-164. DU Leiming,XIE Yanzhao,WANG Shaofei. Simulation computation and analytic modification of characteristic impedance of parallel-plate transmission line[J]. High Power Laser and Particle Beams,2015,27(8):160-164.
[17] 焦其祥,顾畹仪. 电磁场与电磁波[M]. 第2版. 北京:科学出版社,2010:258-261. JIAO Qixiang,GU Wanyi. Field and wave electromagnetics[M]. 2nd ed. Beijing:Science Press,2010:258-261.
[18] 房少军,金 红. 应用时域反射法测量传输线多点不连续性[J]. 四川工业学院学报,2003,22(1):32-34. FANG Shaojun,JIN Hong. Measurement of transmission line multipoint discontinuity by time domain reflectometry[J]. Journal of Sichuan Polytechnic University,2003,22(1):32-34.
[19] 朱江淼,曲玲玲,缪京元,等. 基于TDR的特性阻抗测量的数据处理[J]. 电子测量技术,2015,38(12):116-120. ZHU Jiangmiao,QU Lingling,MIAO Jingyuan,et al. Data processing of characteristic impedance measurement based on TDR[J]. Electronic Measurement Technology,2015,38(12):116-120.
[20] 李金刚. PCB板特性阻抗测试方法研究[D]. 西安:西安电子科技大学,2013:15-19. LI Jingang. Research on method of impedance test for PCB Board[D]. Xi’an: Xi’an University of Electronic Science and Technology,2013:15-19.
[21] 雷英俊,秦开宇,曹 勇,等. 基于时域反射的特性阻抗测量[J]. 电子测量技术,2009,32(4):38-40. LEI Yingjun,QIN Kaiyu,CAO Yong,et al. Measurement of characteristic impedance based on time domain reflectometry[J]. Electronic Measurement Technology,2009,32(4):38-40.
[22] POZAR D M. Microwave engineering[M]. 3rd ed. Hoboken:Wiley,2005:258-261.
[23] 大卫 K. 电磁场与电磁波[M]. 何亚军,桂良启,译. 北京:科学出版社,2010:291-295. DAVID K. Field and wave electromagnetics[M]. HE Yejun,GUI Liangqi,Translated. Beijing:Tsinghua University Press,2010:291-295.

备注/Memo

备注/Memo:
收稿日期:2019-10-16; 修回日期:2019-12-17基金项目:国家自然科学基金 (51577103)。Project Supported by the National Natural Science Foundation of China (51577103).刘丽娟(1993—),女,硕士研究生,主要从事电磁兼容测试与仿真工作。伍小刚(1978—),男,硕士,高级工程师,主要从事电力系统自动化研究开发工作。朱崇铭(1983—),男,硕士,工程师,主要从事电力系统电磁兼容测试与研究工作。邹 军(1983—),男,博士,教授,主要从事电磁环境与接地技术、电磁脉冲瞬态分析、电磁场数值计算工作。
更新日期/Last Update: 2020-02-14