[1]黄新波,王 宁,朱永灿,等.基于RST-SOM的高压断路器故障诊断[J].高压电器,2020,56(03):1-8.[doi:10.13296/j.1001-1609.hva.2020.03.001 ]
 HUANG Xinbo,WANG Ning,ZHU Yongcan,et al.Fault Diagnosis of High-voltage Circuit Breaker Based on RST-SOM[J].High Voltage Apparatus,2020,56(03):1-8.[doi:10.13296/j.1001-1609.hva.2020.03.001 ]
点击复制

基于RST-SOM的高压断路器故障诊断()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年03期
页码:
1-8
栏目:
研究与分析
出版日期:
2020-03-15

文章信息/Info

Title:
Fault Diagnosis of High-voltage Circuit Breaker Based on RST-SOM
作者:
黄新波 王 宁 朱永灿 马玉涛 吴明松
(西安工程大学电子信息学院, 西安 710048)
Author(s):
HUANG Xinbo WANG Ning ZHU Yongcan MA Yutao WU Mingsong
(College of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China)
关键词:
高压断路器 故障诊断 粗糙集 自组织特征映射网络
Keywords:
high-voltage circuit breaker fault diagnosis rough sets theory self-organizing feature map
DOI:
10.13296/j.1001-1609.hva.2020.03.001
摘要:
由于高压断路器运行过程中产生的状态数据庞大,传统的基于人工神经网络的高压断路器故障诊断方法在针对这一问题时存在网络结构复杂、训练过程费时、诊断速率缓慢的缺点。由此,文中提出RST粗糙集结合SOM自组织特征映射网络的方法,通过RST理论对断路器故障数据中的各个属性进行评价并寻找最小属性集,以此消除特征信息中存在的冗余属性,得到约简决策表,并将新形成的故障特征数据作为输入结合自组织特征映射网络进行高压断路器故障诊断。经过验证,在确保整体准确率能够达到91%的情况下,缩短了训练时间,简化了网络结构,在工程实践应用中表现良好。
Abstract:
The traditional fault diagnosis method of high-voltage circuit breaker based on artificial neural network has a shortcoming that the complex of network structure because of the high-voltage circuit breaker fault feature information is too large, and in the previously proposed self-organizing feature map network to verify the fault diagnosis also exists when the training process is time-consuming, slow diagnosis of the shortcomings. So, a rough sets theory combined with self-organizing feature map network has proposed in this paper, firstly, the attributes of the fault data are evaluated by the rough set theory and the minimum attribute set is found, the redundant attributes in the feature information are eliminated, the reduction decision table is obtained, the new fault characteristic data is formed, the new fault characteristic data is also as the input of self-organizing feature map. The new method ensure that the overall accuracy rate achieved 91%, and simplifying the network structure, improve the running time and diagnostic rate after verification, so this algorithm can be effectively implemented in fault diagnosis.

参考文献/References:

[1] 黄新波,陈荣贵,王孝敬,等. 输电线路在线监测与故障诊断[M]. 第2版. 北 京:中国电力出版社,2014:206-232. HUANG Xinbo,CHEN Rongcui,WANG Xiaojing,et al.Transmission line on-line monitoring and fault diagnosis[M]. 2nd ed. Beijing:China Electric Power Press,2014:206-232.
[2] 黄新波,胡潇文,朱永灿,等. 基于卷积神经网络算法的高压断路器故障诊断[J]. 电力自动化设备,2018,38(5):136-140. HUANG Xinbo,HU Xiaowen,ZHU Yongcan,et al.Fault diagnosis of high-voltage circuit breaker based on convolution neural network electric[J]. Power Automation Equipment,2018,38(5):136-140.
[3] 李永德,李红伟,张炳成,等. 融合粗糙集与神经网络的燃气轮发电机组振动故障诊断方法[J]. 电力系统保护与控制,2014,42(8):90-94. LI Yongde,LI Hongwei,ZHANG Bingcheng,et al.Fault diagnosis of gas turbine generator set by combination of rough sets and neural network[J]. Power System Protection and Control,2014,42(8):90-94.
[4] 庞清乐. 基于粗糙集理论的神经网络预测算法及其在短期负荷预测中的应用[J]. 电网技术,2010,34(12):168-173. PANG Qingle.A rough set-based neural network load forecasting algorithm and its application in short-term load forecasting[J]. Power System Technology,2010,34(12):168-173.
[5] 徐建源,张 彬,林 莘,等.能谱熵向量法及粒子群优化的RBF神经网络在高压断路器机械故障诊断中的应用[J]. 高电压技术,2012,38(6):1299-1306. XU Jianyuan,ZHANG Bin,LIN Xin,et al. Application of energy spectrum entropy vector method and RBF neural networks optimized by the particle swarm in high-voltage circuit breaker mechanical fault diagnosis[J]. High Voltage Engineering,2012,38(6):1299-1306.
[6] 黄 建,胡晓光,巩玉楠.基于经验模态分解的高压断路器机械故障诊断方法[J]. 中国电机工程学报,2011,31(12):108-113. HUANG Jian,HU Xiaoguang,GONG Yu’nan,et al.Machinery fault diagnosis of high voltage circuit breaker based on empirical mode decomposition[J]. Proceedings of the CSEE,2011,31(12):108-113.
[7] 赵 科,杨景刚,马速良,等.基于神经网络集成模型在高压断路器机械故障诊断中的应用[J]. 高压电器,2018,54(7):217-223. ZHAO Ke,YANG Jinggang,MA Suliang,et al.Application of neural network ensemble model in mechanical fault identification of high voltage circuit breaker[J]. High Voltage Apparatus,2018,54(7):217-223.
[8] 雷 帆,高 波,袁海满,等.基于DGA的粗糙集与人工鱼群极限学习机的变压器故障诊断[J]. 高压电器,2017,53(10):124-130. LEI Fan,GAO Bo,YUAN Haiman,et al. Transformer fault diagnosis by using rough set and artificial fish swarm extreme learning machine based on DGA[J]. High Voltage Apparatus,2017,53(10):124-130.
[9] 吴广宁,袁海满,宋臻杰,等.基于粗糙集与多类支持向量机的电力变压器故障诊断[J].高电压技术,2017,43(11):3668-3674. WU Guangning,YUAN Haiman,SONG Zhenjie,et al.Fault diagnosis for power transformer based on rough set and multi-class support vector machine[J]. High Voltage Engineering,2017,43(11):3668-3674.
[10] KLANCNIK S, BALIC J, CUS F. Milling strategy prediction with SOM neural network[J]. IFAC Proceedings Volumes,2008,41(3):163-168.
[11] 赵 虎,崔建强,古浩原. 基于SOM方法的高压断路器机械故障诊断方法研究[J]. 电气开关,2013(6):32-35. ZHAO Hu,CUI Jianqiang,GU Haoyuan. Study on fault diagnosis of high voltage circuit breakers based on ward-SOM method[J].Electric Switchgear,2013(6):32-35.
[12] 王书提,巴寅亮,郭增波. 基于SOM神经网络的发动机故障诊断[J]. 自动化与仪器仪表,2015(8):52-54. WANG Shuti,BA Yinliang,GUO Zengbo. Engine fault diagnosis based on SOM neural network[J]. Automation & Instrumentation,2015(8):52-54.
[13] MARIETTE J,OLTEANU M,VILLA-VIALANEIX N. Efficient interpretable variants of online SOM for large dissimilarity data[J]. Neurocomputing,2016(225):31-48.
[14] 黄新波,陶 晨,刘 斌. 基于变精度粗糙集-支持向量机的断路器故障诊断[J]. 广东电力,2014(7):64-67. HUANG Xinbo,TAO Cheng,LIU Bin.Breaker fault diagnosis based on variable precision rough set-support vector machine[J]. Guangdong Electric Power,2014(7):64-67.
[15] 尹柏强,何怡刚,朱彦卿.一种广义S变换及模糊SOM网络的电能质量多扰动检测和识别方法[J].中国电机工程学报,2015,35(4):866-872. YIN Baiqiang,HE Yigang,ZHU Yanqing.Detection and classification of power quality multi-disturbances based on generalized S-transform and fuzzy SOM neural network[J]. Proceedings of the CSEE,2015,35(4):866-872.
[16] 孙 抗,刘永超.基于EEMD和马氏距离的高压断路器机械故障诊断研究[J]. 高压电器,2018,54(12):43-49. SUN Hang,LIU Yongchao.Research on mechanical fault diagnosis of high voltage circuit breaker based on EEMD and mahalanobis distance discriminant[J]. High Voltage Apparatus,2018,54(12):43-49.
[17] 戴 敏,祝加雄,贺元骅. 基于SOM算法和免疫神经网络的飞机燃油系统故障诊断[J]. 计算机测量与控制,2014(11):3483-3486. DAI Min,ZHU Jiaxiong,HE Yuanhua.Fault diag nosis for aircraft fuel system based on SOM algorism and immune neural network[J]. Computer Measurement & Control,2014(11):3483-3486.
[18] 刘建华,周明平,侯川川.基于量子遗传神经网络与D-S证据理论的断路器机械特性故障诊断[J]. 高压电器,2018,54(1):230-235. LIU Jianhua,ZHOU Mingping,HOU Chuanchuan.Mechanical characteristics fault diagnosis of circuit breaker based on quantum genetic neural network and D-S evidence theory[J]. High Voltage Apparatus,2018,54(1):230-235.
[19] 雷璐宁,石为人,范 敏.基于改进的SOM神经网络在水质评价分析中的应用[J].仪器仪表学报,2009,30(11):2379-2383. LEI Luning,SHI Weiren,FAN Min.Water quality evaluation analysis based on improved SOM neural network[J]. Chinese Journal of Scientific Instrument,2009,30(11):2379-2383.
[20] 张 龙,黄新波,蒋波涛,等.基于触头行程测量的断路器机械特性在线监测[J]. 西安工程大学学报,2018,32(3):302-310. ZHANG Long,HUANG Xinbo,JIANG Botao,et al.On line monitoring technology of mechanical characteristics of circuit breaker based on contact stroke measurement[J]. Journal of Xi’an Polytechnic University,2018,32(3):302-310.
[21] 马旭凯,谷立臣,李世龙. 基于SOM神经网络的柴油机故障诊断[J]. 机械制造与自动化,2009(2):81-83. MA Xukai,GU Lichen,LI Shilong.Fault diagnosis of diesel engine based on SOM neural network[J]. Machine Building & Automation,2009(2):81-83.
[22] HANSEN M,SAARSALMI A,PELTRE C. Changes in SOM composition and stability to microbial degradation over time in response to wood chip ash fertilisation[J]. Soil Biology and Biochemistry,2016(99):179-186-.

备注/Memo

备注/Memo:
收稿日期:2019-10-12; 修回日期:2019-12-16 基金项目:陕西省重点项目-工业领域(2018ZDXM-GY-040);西安市科技计划项目(201805030YD8CG14(4))。 Project Supported by Key Research and Development Program Funded by Shaanxi Provincial Science and Technology Department(2018ZDXM-GY-040),Xi’an Science and Technology Planning Project(201805030YD8CG1(4)).黄新波(1975—),男 ,博士(后),教授,博导,从事智能电网输变电设备在线监测理论与关键技术、无线网络传感器等研究。 王 宁(1993—),男,硕士研究生,研究方向为输电线路在线监测与故障诊断。 朱永灿(1986—),男,博士研究生,研究方向为智能电网在线监测理论与关键技术的研究。
更新日期/Last Update: 2020-03-15