[1]吴 田,杨 东,黎 鹏,等.中压开关柜内部电弧压力升计算——模型简化方法研究[J].高压电器,2020,56(03):39-45,53.[doi:10.13296/j.1001-1609.hva.2020.03.006]
 WU Tian,YANG Dong,LI Peng,et al.Study on the Model Simpliflcation Method for the Calculation of Arc Pressure Rise in MV Switchgear[J].High Voltage Apparatus,2020,56(03):39-45,53.[doi:10.13296/j.1001-1609.hva.2020.03.006]
点击复制

中压开关柜内部电弧压力升计算——模型简化方法研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年03期
页码:
39-45,53
栏目:
研究与分析
出版日期:
2020-03-15

文章信息/Info

Title:
Study on the Model Simpliflcation Method for the Calculation of Arc Pressure Rise in MV Switchgear
作者:
吴 田1 杨 东1 黎 鹏1 黎子晋1 吴泳聪2 方 雯1
(1. 三峡大学湖北省输电线路工程技术研究中心, 宜昌 443002; 2. 武汉大学电气与自动化学院, 武汉 430072)
Author(s):
WU Tian1 YANG Dong1 LI Peng1 LI Zijin1 WU Yongcong2 FANG Wen1
(1. Hubei Provincial Engineering Technology Research Center for Power Transmission Line, China Three Gorges University, Hubei Yichang 430072, China; 2. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)
关键词:
开关柜 电弧故障 压力升 SCM CFD
Keywords:
switchgear arcing fault pressure rise SCM CFD
DOI:
10.13296/j.1001-1609.hva.2020.03.006
摘要:
中压开关柜内部电弧故障时有发生,其短时间释放出的巨大能量引起隔室内部压力迅速上升,对设备、建筑物以及工作人员的安全造成了严重威胁。基于零部件规则化和隔室等容积替代的简化原则,提出了开关柜复杂模型简化方法;利用CFD法计算了不同简化模型的压力分布规律,给出了模型最优简化方法;对SCM法与CFD法获得的计算结果进行了对比,分析了两者的差异。结果表明:采用规则化—等容积替代混合方式简化模型获得的结果与原始模型吻合较好,计算时间缩短了约54.39%;当泄压板打开后,隔室内部的压强分布差异较大,采用SCM法获得的结果误差较大,应采用CFD法进行求解。
Abstract:
The arcing fault inside medium-voltage (MV) switchgear happened occasionally. The great energy is released in a short time in the switchgear, resulting in pressure rise rapidly, which caused a serious threat to the safety of the equipment, buildings and personnel. Based on the simplified principles such as regularization replacement of the parts and isovolumetric replacement of the compartment, the simplified methods for the switchgear complex model are proposed in the paper. The pressure distribution for the different simplified models are calculated by the CFD, and the best simplified method for the model is given. The results are calculated by the pressure rise standard calculation method (SCM) and CFD, and the difference of both is analyzed. The results show that the model obtained by combined with the regularization replacement of the parts and the isovolumetric replacement of the compartment can get similar results with the original model, and the computation time is reduced by 54.39%. After the pressure relief cover is open, the pressure distribution has a great difference in the compartment. The result error is big by using SMC, and the CFD should be adopted for the switchgear.

参考文献/References:

[1] DAALDER J E, LILLEVIK O, REIN A , et al. Arc in SF6-MV-switchgear pressure rise in equipment room[C]//14th International Conference and Exhibition on Electricity Distribution (CIRED). [S.l.]:CIRED,1989: 37-41.
[2] 潘长明,刘 刚,熊 炬,等.高压开关柜绝缘事故的分析及防范措施[J]. 高压电器,2011,47(7):90-93. PAN Changming,LIU Gang,XIONG Ju,et al.High voltage switchgear insulation accident’s analysis and countermeasures[J].High Voltage Apparatus,2011,47(7):90-93.
[3] 阮江军,黎 鹏,黄道春,等. 中压开关柜内部短路燃弧热-力效应研究综述[J]. 高电压技术,2018,44(10): 3340-3351. RUAN Jiangjun,LI Peng,HUANG Daochun,et al. Review on thermal-mechanical effects research of MV switchgear due to internal short circuit arcing[J]. High Voltage Engineering,2018,44(10): 3340-3351.
[4] 李 玲,刘成学. 中压开关柜内部故障电弧计算及防护措施[J]. 高压电器,2014,50(9):131-138. LI Ling,LIU Chengxue.Calculation and prevention of internal fault arc in medium voltage switchgear[J].High Voltage Apparatus,2014,50(9):131-138.
[5] 王 伟.12 kV开关柜内部燃弧仿真及柜体强度优化[D].沈阳:沈阳工业大学,2011. WANG Wei. Internal arcing simulation and cabinet strength optimum of 12 kV switchgear[D]. Shenyang: Shenyang University of Technology,2012.
[6] 刘柱揆,丁心志,陈福明,等. 开关柜电弧故障及其测量方法研究[J]. 电网技术,2017,41(4):1345-1349. LIU Zhukui,DING Xinzhi,CHEN Fuming,et al. Research on switchgear arc discharge fault and its measurement[J]. Power System Technology,2017,41(4):1345-1349.
[7] 刘官耕,杜松怀,苏 娟,等. 低压电弧故障防护技术研究与发展趋势[J]. 电网技术,2017,41(1):305-313. LIU Guangeng,DU Songhuai,SU Juan,et al. Research on LV arc fault protection and its development trends[J]. Power System Technology,2017,41(1):305-313.
[8] 熊泰昌.内部电弧故障试验情况下中压开关柜强度计算[J].高压电器,2002,38(4):42-44. XIONG Taichang.Strength calculation of medium voltage switchgear under internal arc-fault test[J]. High Voltage Apparatus,2002,38(4):42-44.
[9] 黄 锐,胡毅亭,马炳烈,等.开关柜内部电弧故障产生力和热的计算模型[J].爆炸与冲击,2000,20(2):125-130. HUANG Rui,HU Yiting,MA Binglie,et al.Calculation model for the effects of force and heat produced by inner arc fault in switchgear cabinet[J].Explosion and Shocks Waves,2000,20(2):125-130.
[10] 3.6 kV~40.5 kV交流金属封闭开关设备和控制设备:GB 3906—2006[S]. 2006. Alternating-current metal-enclosed switchgear and controlgear for rated voltages above 3.6 kV and up to and including 40.5 kV:GB 3906—2006[S]. 2006.
[11] FRIBERG G,PIETSCH G J.Calculation of pressure rise due to arcing faults[J].IEEE Transactions on Power Delivery,1999,14(2):365-370.
[12] LUTZ F,PIETSCH G.The calculation of overpressure in metal-enclosed switchgear due to internal arcing[J].IEEE Transactions Power Apparatus and System,1982,PAS-101(11):4230-4236.
[13] DASBACH A,PIETSCH G J. Calculation of pressure waves in substation buildings due to arcing faults[J].IEEE Transactions Power Delivery,1990(5):1760-65.
[14] NENAD U,EDGAR D,MARTIN K, et al. Application of simplified model for the calculation of the pressure rise in MV switchgear due to internal arc fault[C]//22nd International Conference on Electricity Distribution.Stockholm,Sweden:IET,2013:1-4.
[15] IWATA M,ANANTAVANICH K,PIETSCH G.Influence of arc current on fraction kp of electric arc energy leading to pressure rise in a closed container[C]//17th International Conference on Gas Discharges and their Application.Cardiff,UK:IEEE,2008:189-192.
[16] IWATA M,ANANTAVANICH K,PIETSCH G.Influence of current and electrode material on fraction kp of electric arc energy leading to pressure rise in a closed container during internal arcing[J].IEEE Transactions on Power Delivery,2010,25(3):2028-2029.
[17] ZHANG X,PIETSCH G,GOCKENBACH E.Investigation of the thermal transfer coefficient by the energy balance of fault arcs in electrical installations[J].IEEE Transactions on Power Delivery,2006,21(1):425-431.
[18] FJELD E,HAGEN S T.Small-scale arc fault testing of medium-voltage metal-enclosed switchgear[J].IEEE Transactions on Power Delivery,2016,31(1):37-43.
[19] 蔡 彬,陈德桂,吴伟光,等.开关柜耐受最大冲击载荷的冲击动力学研究[J].中国电机工程学报,2005,25(4):124-130. CAI Bin,CHEN Degui,WU Weiguang,et al.Research of shock dynamics on withstanding the maximal shock load in switchgear assemblies[J].Proceedings of the CSEE,2005,25(4):124-130.
[20] CAI bin,CHEN Degui,LI Zhipeng.Simulation and experiments on internal arcing faults in MV metal-clad switchgear[J]. Transactions of China Eletrotech- Nical Society,2004,3(3):82-87.
[21] RONG Mingzhe,LI Mei,WU Yi,et al.3-D MHD modeling of internal fault arc in a closed container[J].IEEE Transactions on Power Delivery,2017,32(3): 1220-1227.
[22] WU Yi,RONG Mingzhe,YANG Fei,et al.Experimental and theoretical study of internal fault arc in a closed container[J].Journal of Physics D:Applied Physics,2014,12(11):1873-1886.
[23] LI Peng, RUAN Jiangjun, HUANG Daochun, et al. Analysis of pressure rise in a closed container due to internal arcing[J]. Energies, 2017,10(3): 294-310.
[24] 黎 鹏,阮江军,黄道春,等. 封闭容器内部短路爆炸压力效应计算[J]. 爆炸与冲击,2017,37(6):1065-1071. LI Peng,RUAN Jiangjun,HUANG Daochun,et al.Pressure effect calculation of internal short-circuit arcing explosion in a closed container[J]. Explosion and Shocks Waves,2017,37(6):1065-1071.
[25] ANANTAVANICH K, PIETSCH G J. Calculation of overpressure in the surroundings of fault arcs in SF6-air mixtures[C]//17th International Conference on Gas Discharges and Their Applications. Cardiff, UK:IEEE,2008: 165-168.
[26] 严导淦. 流体力学中的总流伯努利方程[J]. 物理与工程,2014,24(4):47-53. YAN Daogan. The total flow Bernoulli equation in fluid mechanics[J]. Physics and Engineering, 2014,24(4):47-53.
[27] 张 力,阮江军,黄道春,等.双盘式线圈结构快速斥力机构设计与运动特性仿真研究[J].电工技术学报,2018,33(2):255-264. ZHANG Li,RUAN Jiangjun,HUANG Daochun,et al.Study on the design and movement characteristics simulation of a fast repulsion mechanism based on double-coil structure[J].Transactions of China Eletrotech-Nical Society, 2018,33(2):255-264.

备注/Memo

备注/Memo:
收稿日期:2019-09-28; 修回日期:2019-11-26 基金项目:中央高校基本科研业务费专项资金(2042016gf0008)。 Project Supported by the Fundamental Research Funds for the Central Universities (2042016gf0008).吴 田(1983—),男,博士,高级工程师,研究方向为带电作业、输电线路外绝缘等。 杨 东(1993—),男,硕士研究生,研究方向为高电压与绝缘技术。 黎 鹏(1989—),男,博士,讲师,研究方向为高压电器、电工装备多物理场分析等(通讯作者)。 黎子晋(2000—),男,本科生,研究方向为高电压与绝缘技术。 吴泳聪(1991—),男,博士生,研究方向为电磁多物理场分析与高压设备状态评估。 方 雯(1989—),女,硕士,讲师,研究方向为高电压与绝缘技术。
更新日期/Last Update: 2020-03-15