[1]李智琦,罗日成,李 稳,等.±800 kV特高压直流输电线路带电作业电位转移特性分析[J].高压电器,2020,56(03):164-168,175.[doi:10.13296/j.1001-1609.hva.2020.03.024 ]
 LI Zhiqi,LUO Richeng,LI Wen,et al.Analysis of Potential Shift Characteristics of Live Working on ±800 kV UHVDC Transmission Line[J].High Voltage Apparatus,2020,56(03):164-168,175.[doi:10.13296/j.1001-1609.hva.2020.03.024 ]
点击复制

±800 kV特高压直流输电线路带电作业电位转移特性分析()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年03期
页码:
164-168,175
栏目:
研究与分析
出版日期:
2020-03-15

文章信息/Info

Title:
Analysis of Potential Shift Characteristics of Live Working on ±800 kV UHVDC Transmission Line
作者:
李智琦1 罗日成1 李 稳2 周晨梦1 史志强3 郑云龙1
(1. 长沙理工大学电气与信息工程学院, 长沙 410114; 2. 国网湖南省电力有限公司检修公司, 长沙 410018; 3. 国网山东省电力公司检修公司, 济南 250000)
Author(s):
LI Zhiqi1 LUO Richeng1 LI Wen2 ZHOU Chenmeng1 SHI Zhiqiang3 ZHENG Yunlong1
(1. School of Electric and Information Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2. Maintenance Company of State Grid Hunan Electric Power Company, Changsha 410018, China; 3. Maintenance Company of State Grid Shandong Electric Power Company, Jinan 250000, China)
关键词:
±800 kV 带电作业 电位转移 流体力学模型 电场计算 暂态能量
Keywords:
±800 kV live working potential shift hydrodynamic model electric field calculation transient energy
DOI:
10.13296/j.1001-1609.hva.2020.03.024
摘要:
为保障进行±800 kV输电线路带电作业人员的人身安全,对带电作业人员电位转移特性的研究有助于制定合适的安全防护措施。通过建立作业人员进行电位转移过程中基于流体动力学的棒—板间隙放电模型,仿真得到了人与导线间的空气间隙电场强度变化特性,计算了转移过程中的暂态能量,分析了转移距离为0.3~0.6 m时电位转移能量数值的分布特点。结果表明,不同转移距离下的转移能量均在1.0 J附近,随着转移距离的增大,转移能量有所增加,而转移能量高于1.0 J时,导电手套存在被烧蚀的风险,因此作业人员进行±800 kV输电线路带电作业电位转移宜使用电位转移棒进行电位转移,确保作业人员的人身安全。
Abstract:
In order to ensure the safety of workers while live working on ±800 kV transmission line, the analysis of the potential transfer characteristics is helpful to take appropriate safety-protection for operating personnel. By establishing the model of the rod-plate gap discharge based on hydrodynamics theory during the process of potential transfer, the electric field intensity of the air gap between the worker and the transmission lines is acquired, the transient energy during potential shift is calculated, and the value of potential transfer energy distribution characteristics is analyzed while the transfer distance changed from 0.3 m to 0.6 m. The results show that the transfer energy under different transfer distances is around 1.0 J, and the transfer energy increases with the increase of transfer distance. When the transfer energy is higher than 1.0 J the conductive gloves have the risk of being ablated. Thus, to protect the operating personnel, a potential, transfer rod is required when transferring to the live conductor of the ±800 kV transmission line.

参考文献/References:

[1] 刘 凯,吴 田,刘 庭. ±800 kV特高压直流输电线路的电位转移电流特性[J]. 高电压技术,2013,39(3):568-576. LIU Kai,WU Tian,LIU Ting. Characteristics of potential transfer current of ±800 kV UHVDC Transmission line[J]. High Voltage Engineering,2013,39(3): 568-576.
[2] 胡 毅,刘 凯,彭 勇,等.带电作业关键技术研究进展与趋势[J]. 高电压技术,2014,40(7):1921-1931. HU Yi,LIU Kai,PENG Yong,et al. Research status and development trend of live working key technology[J]. High Voltage Engineering,2014,40(7):1921-1931.
[3] 刘夏清,李 稳,姜赤龙,等.±1 100 kV特高压直流输电线路带电作业电位转移特性[J]. 高电压技术,2017,43(10):3149-3153. LIU Xiaqing,LI Wen,JIANG Chilong,et al. Transient characteristics of potential transfer of living working on ±1 100 kV UHVDC transmission line[J]. High Voltage Engineering,2017,43(10):3149-3153.
[4] 蔡焕青,邵瑰玮,文志科,等.带电作业中电位转移能量对人身安全的影响[J]. 高电压技术,2015,41(10):3479-3483. CAI Huanqing,SHAO Guiwei,WEN Zhike,et al. Influence of potential shift transient energy on personnel safety during live working[J]. High Voltage Engineering,2015,41(10):3479-3483.
[5] 伍飞飞.直流输电线路电晕放电的微观物理过程及离子流场分析[D]. 重庆:重庆大学,2014. WU Feifei. Numerical analysis on microscopic process of corona discharge and ionized field of HVDC transmission lines[D]. Chongqing: Chongqing University,2014.
[6] 彭庆军,司马文霞,杨 庆,等.初始电子浓度对空气中针板间隙正极性流注放电的影响[J]. 高电压技术,2013,39(1):37-43. PENG Qingjun,SIMA Wenxia,YANG Qing,et al. Influence of initial electron concentration on positive streamer discharge in pin-plate air gap[J]. High Voltage Engineering,2013,39(1):37-43.
[7] SERDYUK Y V. Propagation of cathode-directed streamer discharges in air[C]//Proceedings of the 2013 COMSOL Conference. Rotterdam:[s.n.],2013:1-5.
[8] VIDAL F,GALLIMBERTI I,RIZK F A M,et al. Modeling of the air plasma near the tip of the positive leader[J]. IEEE Transactions on Plasma Science,2002,30(3):1339-1349.
[9] MORROW R,LOWKE J J. Streamer propagation in air[J]. Journal of Physics D Applied Physics,1997,30(4):614-627.
[10] 洪 川. 冲击电压下棒-板长空气间隙放电中空间电场的计算研究[D]. 重庆:重庆大学,2007. HONG Chuan. Calculation and study of the space electric field in long rod-plane gap discharge[D]. Chongqing: Chongqing University,2007.
[11] ZHANG L,HUI J F,MENG X B,et al. The simulation of streamer dynamics in the air gap[C]//Electrical Insulation and Dielectric Phenomena. [S.l.]:IEEE,2012:728-731.
[12] 胡建林,洪 川,杜 林,等.基于有限元弱解式的棒-板长空气间隙先导放电空间电场仿真研究[J]. 中国电机工程学报,2008,28(10):148-154. HU Jianlin,HONG Chuan,DU Lin,et al. Simulation study on electric field of a long rod-plane air gap during leader discharge based on weak form of finite element method[J]. Proceedings of the CSEE,2008,28(10):148-154.
[13] SIMA W,PENG Q,YANG Q,et al. Study of the characteristics of a streamer discharge in air based on a plasma chemical model[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2012,19(2):660-670.
[14] 陈维江,曾 嵘,贺恒鑫. 长空气间隙放电研究进展[J]. 高电压技术,2013,39(6):1281-1295. CHEN Weijiang,ZENG Rong,HE Hengxin. Research progress of long air gap discharges[J]. High Voltage Engineering,2013,39(6):1281-1295.
[15] 詹花茂,刘 波,师 伟,等. 操作冲击电压下空间电荷对棒-线间隙放电的影响[J]. 高压电器,2014,50(2):92-98. ZHAN Huamao,LIU Bo,SHI Wei,et al. Influence of space charge on air gap discharge under switching impulse[J]. High Voltage Apparatus,2014,50(2):92-98.
[16] 胡 京,文习山,蓝 磊,等. 棒-板长间隙正极性放电仿真模型[J]. 高电压技术,2010,36(6):1392-1397. HU Jing,WEN Xishan,LAN Lei,et al. Simulation model of rod-plane gap positive discharge[J]. High Voltage Engineering,2010,36(6):1392-1397.
[17] 阮江军,唐烈峥,邱志斌,等. 基于流注起始判据的球—板—球短空气间隙击穿电压计算[J]. 高压电器,2017,53(7):38-44. RUAN Jiangjun,TANG Liezheng,QIU Zhibin,et al. Breakdown voltage calculation of short sphere-plane-sphere air gap based on streamer inception criteria[J]. High Voltage Apparatus,2017,53(7):38-44.
[18] 胡 毅,刘 凯,刘 庭,等.超/特高压交直流输电线路带电作业[J]. 高电压技术,2012,38(8):1809-1820. HU Yi,LIU Kai,LIU Ting,et al. Living working on EHV/UHV transmission lines[J]. High Voltage Engineering,2012,38(8):1809-1820.
[19] 石 凯,徐文洋,雷东云,等.±800 kV特高压直流输电线路带电作业方式[J]. 电瓷避雷器,2016 (4):6-11. SHI Kai,XU Wenyang,LEI Dongyun,et al. Live working ways for ±800 kV UHVDC transmission line[J]. Insulator and Surge Arresters,2016 (4):6-11.
[20] 肖 勇,樊灵孟.云广±800 kV特高压直流线路带电作业分析[J]. 高电压技术,2010,36(9):2206-2211. XIAO Yong,FANG Lingmeng. Yun-Guang ±800 kV HVDC live working analysis[J]. High Voltage Engineering,2010,36(9):2206-2211.

备注/Memo

备注/Memo:
收稿日期:2019-11-14; 修回日期:2020-02-15 基金项目:湖南省教育厅科学研究项目(15C0031)。 Project Supported by Scientific Research Foundation of Hunan Provincial Education Department(15C0031).李智琦(1994—),男,硕士研究生,研究方向为输电线路带电作业技术等。
更新日期/Last Update: 2020-03-15