[1]袁肖雷,周羽生,王永安,等.局部对流换热对输电线路高频激励融冰的影响[J].高压电器,2020,56(03):224-229.[doi:10.13296/j.1001-1609.hva.2020.03.033]
 YUAN Xiaolei,ZHOU Yusheng,WANG Yongan,et al.Effect of Local Convection Heat Transfer on High-frequency Excitation Deicing for Transmission Lines[J].High Voltage Apparatus,2020,56(03):224-229.[doi:10.13296/j.1001-1609.hva.2020.03.033]
点击复制

局部对流换热对输电线路高频激励融冰的影响()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年03期
页码:
224-229
栏目:
技术讨论
出版日期:
2020-03-15

文章信息/Info

Title:
Effect of Local Convection Heat Transfer on High-frequency Excitation Deicing for Transmission Lines
作者:
袁肖雷1 周羽生1 王永安1 熊 强1 王贤军1 马晓红2 代 洲2
(1. 长沙理工大学 电气与信息工程学院, 长沙 410114; 2. 贵州电网有限责任公司电力科学研究院, 贵阳 550000)
Author(s):
YUAN Xiaolei1 ZHOU Yusheng1 WANG Yongan1 XIONG Qiang1 WANG Xianjun1MA Xiaohong2 DAI Zhou2
(1. College of Electrical Engineering and Information,Changsha University of Science and Technology, Changsha 410114, China; 2. Electric Power Research Institute of Guizhou Power Gird Co., Ltd., Guiyang 550000, China)
关键词:
高频激励融冰 局部对流换热 输电线路 融冰模型
Keywords:
high-frequency excitation de-icing local convection heat transfer transmission lines de-icing model
DOI:
10.13296/j.1001-1609.hva.2020.03.033
摘要:
在覆冰导线高频激励融冰温度场的分析与计算中,局部对流换热对温度场及高频激励融冰模型有很大影响。对此,文中分析了高频融冰过程中的热量损失和对流换热的影响因素,通过Ansys有限元软件对高频激励融冰模型的电磁场和热分析与计算,揭示了局部对流换热对高频融冰模型温度场及其迎风侧和背风侧的影响,表明了局部对流换热使导线背风侧覆冰先融化脱落,迎风侧覆冰后融化脱落。覆冰导线外表面的温度随对流换热的系数增大而下降,下降速度随对流换热系数增大而减缓。该研究成果有利于进一步改进和优化高频激励融冰计算模型。
Abstract:
In the analysis and calculation of the temperature field of the high-frequency excitation deicing, the local convection heat transfer has a great influence on the temperature field and the high frequency excitation deicing model. So the influence factors of heat loss and convection heat transfer in high-frequency deicing process are analyzed in the paper, and the electromagnetic field and thermal analysis of high-frequency excitation deicing are simulated by Ansys finite element software. The local convection heat transfer effect on high-frequency deicing model of temperature field and windward and leeward side are analyzed. The result shows the local convection heat transfer make the ice leeward side of wire melt off first, the ice windward side melt off. The temperature of the outer surface of the iced conductor decreases with the increase of the coefficient of convective heat transfer, and the decreasing speed slows down with the increase of the coefficient of convective heat transfer. It is propitious to further improvement high-frequency excitation deicing method and optimization of ice melting model.

参考文献/References:

[1] 范松海. 输电线路短路电流融冰过程与模型研究[D]. 重庆:重庆大学, 2010. FAN Songhai. Study on process and model of ice-melting with short circuit current on iced conductor[D]. Chongqing:Chongqing University,2010.
[2] 蒋兴良,张丽华. 输电线路除冰防冰技术综述[J]. 高电压技术, 1997, 23(1): 73-76. JIANG Xingliang,ZHANG Lihua.De-icing and anti-icing of transmission lines[J]. High Voltage Engineering,1997,23(1): 73-76.
[3] 常 浩,石 岩,殷威扬,等. 交直流线路融冰技术研究[J]. 电网技术, 2008, 32(5): 1-6. CHANG Hao,SHI Yan,YIN Weiyang,et al. Ice-melting technologies for HV AC and HVDC transmission line[J]. Power System Technology, 2008,32(5):1-6.
[4] 赵国帅,李兴源,傅 闯,等. 线路交直流融冰技术综述[J]. 电力系统保护与控制,2011,39(14): 148-154 ZHAO Guoshuai,LI Xingyuan,FU Chuang,et al. Overview of de-icing technology for transmission lines[J]. Power System Protection and Control,2011,39(14): 148-154.
[5] MCCURDY J D,SULLIVAN C R,PETRENKO V F.Using dielectric losses to de-ice power transmission lines with 100 kHz high-voltage excitation[C]//Industry Applications Conference,Thirty-Sixth IAS Annual Meeting. [S.l.]IEEE,2001(4):2515-2519.
[6] 李 宁,周羽生.应用有限元法分析覆冰输电线路高频电源除冰方法[J]. 高压电器,2010,46(12): 107-109. LI Nin,ZHOU Yusheng.Analysis on transmission line icing elimination method by high frequency source[J]. High Voltage Apparatus,2010,46(12) : 107-109.
[7] 周羽生,陈佩瑶,高小刚,等. 基于高频高压激励法的输电线路融冰方法研究[J]. 电瓷避雷器,2011(6): 1-4. ZHOU Yusheng,CHEN Peiyao,GAO Xiaogang,et al. Research on transmission line de-icing method based on high-frequency and high-voltage excitation[J]. Insulators and Surge Arresters, 2011(6): 1-4.
[8] PERZ M C.Analytic determination of high-frequency propagation on ice-covered power lines[J]. IEEE Transaction on Power Apparatus and Systens,1968,87(4) : 698-703.
[9] 朱永灿,黄新波,贾建援,等.输电线路覆冰导线对流换热的数值分析[J]. 高电压技术,2015,41(10):3411-3446 ZHU Yongcan,HUANG Xinbo,JIA Jianyuan,et al. Numerical simulation of surface heat convection for iced conductor[J]. High Voltage Engineering,2015,41(10) : 3411-3446.
[10] 刘国特,郝艳捧,阳 林,等. 基于改进Messinger覆冰模型导线防冰临界电流计算及其影响因素分析[J]. 电工技术学报,2016,31(18): 176-183. LIU Guote,HAO Yanpeng,YANG Lin,et al.Caulation and influencing factors analysis of conductor anti-icing critical current based on improved messinger icing model[J]. Transactions of China Electrotechnical Society,2016,31(18): 176-183.
[11] 覃 晖,邓 帅,黄 伟,等. 南方电网输电线路融冰措施综述[J]. 电力系统保护与控制,2010,38(24): 231-235. QIN Hui,DENG Shuai,HUANG Wei,et al. Summary of power transmission line thawing measures[J]. Power System Protection and Control,2010,38(24): 231-235.
[12] 焦重庆,齐 磊,崔 翔,等. 输电线路外施中频电源融冰技术[J]. 电工技术学报,2010,25(7): 159-164. JIAO Chongqing,QI Lei,CUI Xiang,et al.Power line de-icing using mediun frequency power source[J]. Transactions of China Electrotechnical Society,2010,25(7): 159-164.
[13] CHURCHILL S W,CHU H H S.Correlating equations for laminar and tubulent free convection from a horizontal cylinder[J]. Int.J.Heat Mass Transfer,1975(18):1049.
[14] MAURICE H,CHRISTIAN L,ROBERT S A,et al.A dynamic progamming methodology to develop de-icing trategies during ice storms by channeling load currents in transmission network[J]. IEEE Trans. on Power Delivery,2005,20(2):1604-1610.
[15] CLOUTIER R,BERGERON A,BROCHU J. On-load network de-icer specification for a large transmission network[J]. IEEE Transaction on Power Delivery,2007,22(3) :1947-1955.
[16] PETRENKO V,SULLIVAN C. Methods and systems forremoving ice from surfaces:U.Patent6,653,598[P].2003-11-25.
[17] 杨立军,周菊华.基于 3D 有限元模型的架空输电线路融冰电流计算[J]. 华中电力,2010,23(3):10-14. YANG Lijun,ZHOU Juhua. Calculation of ice-melting current of high voltage overhead line based on 3d finite element model[J]. Central China Electric Power,2010,23(3):10-14.
[18] 舒立春,罗保松,蒋兴良,等.智能循环电流融冰方法及其临界融冰电流研究[J]. 电工技术学报,2012,27(10):26-34. SHU Lichun,LUO Baosong, JIANG Xingliang, et al. Intelligent cycled current ice melting and its critical ice-melting current study[J]. Transactions of China Electrotechnical Society,2012,27(10): 16-34.
[19] 蒋兴良,兰 强. 导线临界防冰电流及其影响因素分析[J]. 高电压技术,2012,38(5):1225-1232. JIANG Xingliang,LAN Qiang.Analysis on critical anti-icing current of conductor and its impacting factors[J]. High Voltage Engineering, 2012,38(5): 1225-1232.
[20] 巢亚锋,岳一石,王 成,等. 输电线路融冰、除冰技术研究综述[J]. 高压电器,2016,52(11): 1-9. CHAO Yafeng,YUE Yishi,WANG Cheng,et al. De-icing techniques for ice-covered transmission lines: A review[J]. High Voltage Apparatus, 2016,52(11): 1-9.

备注/Memo

备注/Memo:
收稿日期:2019-10-21; 修回日期:2019-12-23 基金项目:贵州电网防冰减灾重点实验室研究项目(GZ2015-2-0055);国家自然科学基金资助项目(51307009)。 Project Supported by the Key Laboratory of Ice Disaster Prevention of Guizhou Power Grid CoLtd(GZ2015-2-0055),National Natural Science Foundat of China (51307009). 袁肖雷(1992—),男,硕士,主要研究方向为电网安全与融冰防灾技术。 周羽生(1965—),男,博士,教授,研究生导师,主要研究方向为电网安全与融冰防灾技术、电力系统继电保护与配电网自动化等(通讯作者)。 王永安(1989—),男,硕士,主要研究方向为电网安全与融冰防灾技术。
更新日期/Last Update: 2020-03-15