[1]傅明利,陈 曦,陈柔伊,等.C4F7N/N2混合气体的分解机理研究[J].高压电器,2020,56(07):1-7.[doi:10.13296/j.1001-1609.hva.2020.07.001]
 FU Mingli,CHEN Xi,CHEN Rouyi,et al.Study on the Decomposition Mechanism of C4F7N/N2 Gas Mixture[J].High Voltage Apparatus,2020,56(07):1-7.[doi:10.13296/j.1001-1609.hva.2020.07.001]
点击复制

C4F7N/N2混合气体的分解机理研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年07期
页码:
1-7
栏目:
SF6替代气体研究
出版日期:
2020-07-20

文章信息/Info

Title:
Study on the Decomposition Mechanism of C4F7N/N2 Gas Mixture
作者:
傅明利1 陈 曦2 陈柔伊2 王 琦2 卓 然1 王邸博1张晓星3 李 祎3
(1. 南方电网科学研究院有限责任公司, 广州 510663; 2. 中国南方电网有限责任公司, 广州 510663; 3. 武汉大学, 武汉 430072)
Author(s):
FU Mingli1 CHEN Xi2 CHEN Rouyi2 WANG Qi2 ZHUO Ran1 WANG Dibo1ZHANG Xiaoxing3 LI Yi3
(1. Electric Power Research Institute, CSG, Guangzhou 510663, China; 2. China South Power Grid International Co., Ltd., Guangzhou 510663, China; 3. Wuhan University, Wuhan 430072, China)
关键词:
C4F7N/N2 ReaxFF?MD 分解机理 SF6替代气体
Keywords:
C4F7N/N2 ReaxFF?MD decomposition mechanism SF6 alternative gas
DOI:
10.13296/j.1001-1609.hva.2020.07.001
摘要:
近年来,C4F7N(2,3,3,3-四氟-2-(三氟甲基)-丙腈)凭借优良的绝缘和环保性能得到了替代气体研究领域的广泛关注。目前针对C4F7N混合气体分解特性的研究较少,为明确其分解特性,文中基于ReaxFF分子动力学方法和量子化学DFT理论对C4F7N/N2混合气体的分解机理进行了研究,同时利用气体绝缘性能测试平台配合气相色谱质谱联用仪对C4F7N/N2混合气体多次工频击穿后的放电分解产物进行了检测。研究发现C4F7N/N2混合气体的主要分解产物有CF4、C2F6、C3F8、CF3CN、C2F4、C3F6和C2F5CN,其中C2F6、CF4及CF3CN的相对含量较高;ReaxFF?MD分子动力学模拟显示CF3,CN,F和C3F7是C4F7N分解形成的4种最为重要的自由基碎片。该研究成果深入揭示了C4F7N/N2混合气体的分解机理,为混合气体的工程应用提供了重要参考。
Abstract:
In recent years, C4F7N (2, 3, 3, 3?tetrafluoro?2?(trifluoromethyl) propanenitrile) has got extensive attention in the field of alternative gas research due to its excellent insulation and environmental performance. At present, there are few studies on the decomposition characteristics of C4F7N gas mixture,in order to clarify its decomposition characteristics, the decomposition mechanism of C4F7N/N2 gas mixture is studied based on the ReaxFF molecular dynamics method and quantum chemical DFT theory. The gas insulation performance test platform and gas chromatography?mass spectrometry (GC?MS) were also used to detect the decomposition products of C4F7N/N2 gas mixture after multiple frequency breakdown tests. The results show that the main decomposition products of the C4F7N/N2 gas mixture are CF4、C2F6、 C3F8、 CF3CN、C2F4、C3F6 and C2F5CN. Among them, the relative contents of C2F6、CF4 and CF3CN are relatively high. The ReaxFF?MD simulation shows that CF3、CN、F and C3F7 are the four main free radicals produced by C4F7N decomposition. Related research results not only revealed the decomposition mechanism of C4F7N/N2 gas mixture in depth, but also provides an important reference for the engineering application of C4F7N/N2 gas mixture.

参考文献/References:

[1]张晓星,戴琦伟,韩晔飞,等. CF3I在微水条件下的放电分解组分研究[J]. 高电压技术,2016,42(1):172-178.
ZHANG Xiaoxing, DAI Qiwei, HAN Yefei, et al. Investigation towards the influence of trace water on cf3i decomposition components under discharge[J]. High Voltage Engineering, 2016, 42(1): 172-178.
[2]李兴文,邓云坤,姜 旭,等. 环保气体C4F7N和C5F10O与CO2混合气体的绝缘性能及其应用[J]. 高电压技术,2017,43(3):708-714.
LI Xingwen,DENG Yunkun,JIANG Xu,et al. Insulation performance and application of enviroment-friendly gases mixtures of C4F7N and C5F10O with CO2[J] High Voltage Engineering, 2017, 43(3):708-714.
[3] 肖登明. 环保型绝缘气体的发展前景[J]. 高电压技术, 2016, 42(4):1035-1046.
XIAO Dengming. Development prospect of gas insulation based on environmental protection[J]. High Voltage Engineering, 2016, 42(4): 1035-1046.
[4] KIEFFEL Y, IRWIN T, PONCHON P, et al. Green gas to replace SF6 in electrical grids[J]. IEEE Power and Energy Magazine, 2016, 14(2): 32-39.
[5] BEROUAL A, HADDAD A M. Recent advances in the quest for a new insulation gas with a low impact on the environment to replace sulfur hexafluoride(SF6) gas in high-voltage power network applications[J]. Energies,2017,10(8):1073.
[6] OWENS J G. Greenhouse gas emission reductions through use of a sustainable alternative to SF6[C]// IEEE Electrical Insulation Conference(EIC). Montréal, Canada:IEEE,2016: 535-538.
[7] LIU X L, XIAO D M, WANG Y A, et al. Monte Carlo simulation of electron swarms parameters in C-C4F8 /CF4 gas mixtures[J]. Journal of Shanghai Jiao Tong University(Science), 2008, 13(4):443-447.
[8] KIEFFEL Y. Characteristics of g3-An alternative to SF6[C]//IEEE International Conference on Dielectrics(ICD). Montpellier, France:IEEE,2016: 880-884.
[9] NECHMI H E, BEROUAL A, GIRODET A, et al. Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2587-2593.
[10] NECHMI H E, BEROUAL A, GIRODET A, et al. Effective ionization coefficients and limiting field strength of fluoronitriles—CO2 mixtures[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 886-892.
[11] HOPF A, BRITTON J A, ROSSNER M, et al. Dielectric strength of SF6 substitutes, alternative insulation gases and PFC-gas-mixtures[C]// 2017 IEEE Electrical Insulation Conference (EIC).[S.l.]:IEEE, 2017: 209-212.
[12] 唐 炬, 杨 东, 曾福平,等. 基于分解组分分析的SF6设备绝缘故障诊断方法与技术的研究现状[J]. 电工技术学报, 2016,31(20):41-54.
TANG Ju,YANG Dong,ZENG Fuping,et al. Research status of SF6 insulation equipment fault diagnosis method and technology based on decomposed components analysis[J]. Transactions of China Electrotechnical Society,2016,31(20):41-54.
[13] 李震宇, 贺 伟, 杨金龙,等. 密度泛函理论及其数值方法新进展[J]. 化学进展, 2005, 17(2):192-202.
LI Zhenyu,HE Wei,YANG Jinlong, et al. Recent advances in density functional theory and its numerical methods[J]. Progress in Chemistry, 2005, 17(2): 192-202.
[14] 王子民, 郑 默, 谢勇冰,等. 基于ReaxFF力场的对硝基苯酚臭氧氧化分子动力学模拟[J]. 物理化学学报, 2017, 33(7):1399-1410.
WANG Zimin,ZHENG Mo,XIE Yongbin,et al. Molecular dynamics simulation of ozonation of P-nitrophenol at room temperature with ReaxFF force field[J]. Acta Physics-chemica Sinica,2017,33(7):1399-1410.
[15] 鲁 旭, 韩 帅, 李庆民,等. 聚酰亚胺高温裂解机理的反应分子动力学模拟[J]. 电工技术学报, 2016, 31(12):14-23.
LU Xu, HAN Shuai,LI Qingmin,et al. Reactive molecular dynamics simulation of polyimide pyrolysis mechanism at high temperature[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 14-23.
[16] 肖 淞, 李 祎, 张晓星,等. CF3I及微氧条件下放电分解组分形成机理[J]. 高电压技术, 2017, 43(3):727-735.
XIAO Song,LI Yi,ZHANG Xiaoxing,et al. Discharge decomposition components forming mechanism of CF3I under micro-aerobic condition[J]. High Voltage Engineering, 2017, 43(3):727-735.
[17] 王 璁, 周福文, 屠幼萍,等. 直流电压下CF3I/N2混合气体的放电副产物[J]. 中国电机工程学报, 2017,37(4):1268-1274.
WANG Cong,ZHOU Fuwen,TU Youping,et al. By-products of CF3I/N2 gas mixtures under DC voltage discharge[J]. Proceedings of the CSEE,2017,37(4):1268-1274.
[18] ONO R, ODA T. Measurement of gas temperature and OH density in the afterglow of pulsed positive corona discharge [J]. Journal of Physics D-Applied Physics,2008,41(3):5204.
[19] FU Y, RONG M, YANG K, et al. Calculated rate constants of the chemical reactions involving the main byproducts SO2F, SOF2, SO2F2 of SF6 decomposition in power equipment[J]. Journal of Physics D-Applied Physics, 2016, 49(15):5502.
[20] BRIDGEMAN A J, CAVIGLIASSO G, IRELAND L R, et al. The Mayer bond order as a tool in inorganic chemistry [J]. Journal of the Chemical Society Dalton Transactions, 2001(14):2095-2108.
[21] ZHANG X X,LI Y,XIAO S, et al. Theoretical study of the decomposition mechanism of environmentally friendly insulating medium C3F7CN in the presence of H2O in a discharge[J]. Journal of Physics D Applied Physics, 2017,50(32):5201.

备注/Memo

备注/Memo:
收稿日期:2020-01-10; 修回日期:2020-03-04 基金项目:南方电网重点科技项目(ZBKJXM20170090)。 Project Supported by Science and Technology Project of China Southern Power Grid (No. ZBKJXM20170090).傅明利(1962—),男,博士,高级工程师,主要从事高压电器可靠性及应用技术的研究工作。
更新日期/Last Update: 2020-07-25