[1]李亚莎,徐 程,谢云龙,等.外电场下绝缘纸纤维二糖分子结构及特性研究[J].高压电器,2020,56(07):142-151.[doi:10.13296/j.1001-1609.hva.2020.07.021]
 LI Yasha,XU Cheng,XIE Yunlong,et al.Study on Molecular Structure and Properties of Insulating Paper Cellobiose Under External Electric Field[J].High Voltage Apparatus,2020,56(07):142-151.[doi:10.13296/j.1001-1609.hva.2020.07.021]
点击复制

外电场下绝缘纸纤维二糖分子结构及特性研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年07期
页码:
142-151
栏目:
研究与分析
出版日期:
2020-07-20

文章信息/Info

Title:
Study on Molecular Structure and Properties of Insulating Paper Cellobiose Under External Electric Field
作者:
李亚莎 徐 程 谢云龙 刘国成 黄太焕
(三峡大学电气与新能源学院, 湖北 宜昌 443002)
Author(s):
LI Yasha XU Cheng XIE Yunlong LIU Guocheng HUANG Taihuan
(College of Electrical and New Energy, Three Gorges University, Hubei Sichuan Yichang 443002, China)
关键词:
纤维二糖分子 外电场 能量 稳定性
Keywords:
cellobiose molecule external electric field energy stability
DOI:
10.13296/j.1001-1609.hva.2020.07.021
摘要:
为了从微观角度分析外电场对绝缘纸性能的影响,文中采用B3LYP/6-31G(d)基组对纤维二糖分子进行结构优化后,在不同外电场作用下分析了纤维二糖分子基态结构、前线轨道能量、能隙、红外光谱、Mulliken电荷布居和键级。计算结果表明,随着外电场的增大,纤维素分子链呈先伸展后收缩变化。分子总能量降低,势能升高,偶极矩和极化率增大;HOMO能量增大,LUMO能量减小,能隙减小,使得分子活性升高,稳定性降低。吡喃环中C-O伸缩振动吸收峰和糖苷键C-O-C的不对称伸缩振动吸收峰都出现了红移,导致振动变得不稳定;亲核部位和亲电部位分别转移到纤维二糖分子的左右端部仲羟基,且右端部仲羟基键能更低;纤维二糖分子中糖苷键、吡喃环、仲羟基在外电场下较其他位置更容易遭到破坏,临界击穿场强为13.369 GV/m。
Abstract:
In order to analyze the influence of external electric field on the performance of insulating paper from the microscopic point of view, the B3LYP/6-31G(d) basis group is used to optimize the structure of the cellobiose molecule. The ground state structure, frontier orbital energy, energy gap, infrared spectrum, Mulliken charge population and bond level of cellobiose were analyzed under different external electric fields. The calculation results show that as the external electric field increases, the cellulose molecular chain first stretches and then shrinks. The total energy of the molecule decreases, the potential energy increases, the dipole moment and the polarizability increase; the HOMO energy increases, the LUMO energy decreases, and the energy gap decreases, resulting in an increase in molecular activity and a decrease in stability. The C-O stretching vibration absorption peak and the asymmetric stretching vibration absorption peak of the glycosidic bond C-O-C in the pyran ring are both red shift, causing the vibration to become unstable; the nucleophilic site and the electrophilic site are transferred to the secondary hydroxyl group at the left and right ends of the cellobiose molecule respectively, and the secondary hydroxyl group bond energy at the right end is lower. So the glycosidic bond, the pyran ring and the secondary hydroxyl group in the cellobiose molecule are more easily destroyed under external electric field than other positions, and the critical breakdown electric field intensity is 13.369 GV/m.

参考文献/References:

[1] 赵 彤,石 雷,张远涛,等. 基于分子模拟的绝缘纸高温裂解过程水分产生及其破坏作用研究[J]. 中国电机工程学报,2017,37(15):4548-4556.
ZHAO Tong, SHI Lei, ZHANG Yuantao, et al. Study on H2O formation during the pyrolysis of insulating paper and its destructive effect based on molecular simulation[J]. Proceedings of the CSEE,2017,37(15):4548-4556.
[2] 王世强,胡海燕,刘全桢,等. 热老化对变压器绝缘纸微观结构影响的实验研究[J]. 高压电器,2016,52(2):93-96.
WANG Shiqiang, HU Haiyan, LIU Quanzhen, et al. Experimental research on thermal aging effects on microstructure of transformer paper[J]. High Voltage Apparatus,2016,52(2):93-96.
[3] PAHLAVANPOUR R L, POVAZAN E. Extension of life span of power transformer by on-site improverment of insulating oils[C]//6th International Conference on Dielectric Materials, Measurements and Applications. Leatherhead, UK: IET,1992: 260-263.
[4] ELEY A C, EMSLEY A M,HEYWOOD R,et al. Measuring and understanding the ageing of kraft insulating paper in power in power transformers[J]. IEEE Electrical Insulation Magazine, 1996,12(3): 28-34.
[5] 宋臻杰,吴广宁,倪雪松,等. 聚合度对油纸绝缘时域介电特性影响研究[J]. 高压电器,2017,53(1):126-129.
SONG Yujie, WU Guangning, NI Xuesong, et al. Research on the influence of the degree of polymerization on time domain dielectric properties of oil-paper insulation[J]. High Voltage Apparatus,2017,53(1):126-129.
[6] TANAKA F,OKAMURA K. Characterization of cellulose molecules in hio-system studied by modeling methods[J]. Cellulose, 2005, 12(3): 243-252.
[7] 廖瑞金,胡 舰,杨丽君,等. 变压器绝缘纸热老化降解微观机理的分子模拟研究[J]. 高电压技术,2009,35(7):1565-1570.
LIAO Ruijin, HU Jian, YANG Lijun, et al. Molecular simulation for thermal degradation micromechanism of power transformer insulation paper[J]. High Voltage Engineering,2009,35(7):1565-1570.
[8] 王有元,田 苗,罗明武,等. 水分对绝缘纸微观特性影响的分子模拟研究[J]. 高电压技术,2013,39(11):2615-2622.
WANG Youyuan, TIAN Miao, LUO Mingwu, et al. Molecular modeling study for impact of moisture on microscopic properties of insulating paper[J]. High Voltage Engineering,2013,39(11):2615-2622.
[9] 陆云才. 基于分子模拟的油纸绝缘老化机理及气体扩散行为研究[D]. 重庆: 重庆大学,2007.
LU Yuncai. Study on diffusion behavior of gas and molecular of oil-paper aging using molecular simulation[D]. Chongqing: Chongqing University, 2007.
[10] 廖瑞金,杨丽君,郑含博,等. 电力变压器油纸绝缘热老化研究综述[J]. 电工技术学报,2012,27(5):1-12.
LIAO Ruijin, YANG Lijun, ZHENG Hanbo, et al. Reviews on oil-paper insulation thermal aging in power transformers[J]. Transactions of China Electrotechnical Society,2012,27(5):1-12.
[11] 杨 涛,刘代俊,陈建钧. 外电场下二氧化硫的分子结构及其特性[J]. 物理学报,2016,65(5):62-68.
YANG Tao, LIU Daijun, CHEN Jianjun. Molecular structure and properties of sulfur dioxide under external electric field[J]. Acta Physica Sinica,2016,65(5):62-68.
[12] 李世雄,吴永刚,令狐荣锋,等.ZnSe在外电场下的基态性质和激发特性研究[J]. 物理学报,2015,64(4):82-89.
LI Shixiong, WU Yonggang, LING HU Rongfeng, et al. Ground state properties and excitation properties of znse under different external electric field[J]. Acta Physica Sinica, 2015, 64(4): 82-89..
[13] HILL D J, LE T T, DARVENIZA M, et al. A study of degradation of cellulosic insulation materials in a power transformer,Part 2: Tensile strength of cellulose insulation paper[J]. Polymer Degradation and Stability, 1995, 49(3):429-435.
[14] 陈泽章. 太赫兹波段液晶分子极化率的理论研究[J]. 物理学报,2016,65(14):85-90.
CHEN Zezhang. Theoretical study on the polarizability of liquid crystal in the THz range[J]. Acta Physica Sinica,2016,65(14):85-90.
[15] 段逸群,刘玉柱,李 静,等. CF3I分子在外电场中的物理和光谱性质研究[J]. 原子与分子物理学报,2018,35(5):719-724.
DUAN Yiqun, LIU Yuzhu, LI Jing, et al. Studies on the physical and spectral properties of CF3I under external electric fields[J]. Journal of Atomic and Molecular Physics, 2018,35(5): 719-724.
[16] 黄多辉,王藩侯,闵 军,等. 外电场作用下MgO分子的特性研究[J]. 物理学报,2009,58(5):3052-3057.
HUANG Duohui, WANG Fanhou, MIN Jun, et al. Study on structure characteristics of MgO molecules under external electric field[J]. Acta Physica Sinica,2009,58(5):3052-3057.
[17] 卢 天,陈飞武. 分子轨道成分的计算[J]. 化学学报,2011,69(20):2393-2406.
LU Tian, CHEN Feiwu. Calculation of molecular orbital compositions[J]. Acta Chimica Sinica,2011,69(20):2393-2406.
[18] 潘彦斌,赵 勇,张福义. 红外指纹区特点及解析[J]. 现代仪器,2000(1):1-13.
PAN Yanbin, ZHAO Yong, ZHANG Fuyi. IR fingerprint spectrum and its analyzing method[J]. Modern Instruments,2000(1):1-13.
[19] 黄金保. 纤维素快速热解机理的分子模拟研究[D]. 重庆: 重庆大学,2010.
HUANG Jinbao. Molecular simulation study of pyrolysis mechanism of cellose[D]. Chongqing: Chongqing University, 2010: 37-38.
[20] LU T,CHEN F W. A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry,2012,33(5):580-592.
[21] LI S, LYONS-HART J, BANYASZ J, et al, Real-time evolved gas analysis by FTIR method: An experimental study of cellulose pyrolysis[J]. Fuel,2001,80(12):1809-1817.
[22] SHEN D K, GU S, The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresource Technology,2009, 100(24):6496-6504.

备注/Memo

备注/Memo:
收稿日期:2020-01-14; 修回日期:2020-03-24 基金项目:国家自然科学基金资助项目(51577105)。 Project Supported by National Natural Science Foundation of China(51577105).李亚莎(1967—),男,博士,副教授,主要从事高电压与绝缘技术和电磁场计算方面的研究。 徐 程(1992—),男,硕士,主要从事高电压与绝缘技术方面的研究。
更新日期/Last Update: 2020-07-25