[1]刘 君,余思伍,陈沛龙,等.基于聚类分析的变压器有载分接开关储能弹簧故障识别[J].高压电器,2020,56(07):159-165172.[doi:10.13296/j.1001-1609.hva.2020.07.023]
 LIU Jun,YU Siwu,CHEN Peilong,et al.Fault Recognition for On-load Tap Changer Storage Spring of Power Transformer by Clustering Analysis Algorithm[J].High Voltage Apparatus,2020,56(07):159-165172.[doi:10.13296/j.1001-1609.hva.2020.07.023]
点击复制

基于聚类分析的变压器有载分接开关储能弹簧故障识别()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第56卷
期数:
2020年07期
页码:
159-165172
栏目:
研究与分析
出版日期:
2020-07-20

文章信息/Info

Title:
Fault Recognition for On-load Tap Changer Storage Spring of Power Transformer by Clustering Analysis Algorithm
作者:
刘 君1 余思伍1 陈沛龙1 王丰华2 马晓红1 胡兴海3 钱 勇2
(1. 贵州电网有限责任公司电力科学研究院, 贵阳 550002; 2. 上海交通大学电力传输与功率变换控制教育部重点实验室, 上海 200240; 3. 贵州电网有限责任公司兴义供电局, 贵州 兴义 562400)
Author(s):
LIU Jun1 YU Siwu1 CHEN Peilong1 WANG Fenghua2 MA Xiaohong1 HU Xinghai3 QIAN Yong2
(1. Electric Power Research Institute, Guizhou Power Grid Co., Ltd., Guiyang 550002, China; 2. Key Laboratory of Control of Power Transmission and Conversion for Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; 3. Xingyi Power
关键词:
有载分接开关 振动信号 储能弹簧 聚类分析 类间散度
Keywords:
on-load tap changer(OLTC) vibration signal storage spring clustering analysis between-class scatter
DOI:
10.13296/j.1001-1609.hva.2020.07.023
摘要:
储能弹簧是变压器有载分接开关(on-load tap changer, OLTC)进行调压操作的关键部件,与OLTC的换挡过程成功与否密切相关。为准确识别储能弹簧的机械故障,文中从OLTC切换过程中振动信号的混沌特性出发,首先对振动信号进行了相空间重构,然后应用K-means++聚类算法对高维空间的相点进行了聚类分析,其中聚类时的类簇数目依据凝聚层次聚类法确定,据此定义了类间散度来定量描述OLTC振动信号的相点空间分布。以某组合式OLTC为测试对象,对其正常状态与存在不同磨损程度的储能弹簧故障时切换过程中的振动信号进行了测试。结果表明,合理的类簇数目能有效提高OLTC振动信号聚类分析的准确度,类间散度能准确识别OLTC储能弹簧的不同磨损程度,从而为OLTC机械状态的振动监测技术提供了重要依据。
Abstract:
Storage spring is one of the key components of on-load tap changer (OLTC) of power transformer during its operation of voltage regulation, which is closely related to the success of whole switch-over process. According to the chaotic features of vibration signals resulted from the switch-over process, the phase space of vibrations signals is built first. The K-means ++ clustering algorithm is applied to analyze the distribution of phase points in the high dimensional space, where the hierarchical agglomerative clustering is selected to determine the number of clustering. The index of inter class divergence is defined to quantitatively describe the space point distribution of OLTC vibration signals. The vibration signals of the combined OLTC is measured in normal condition and storage spring fault with different abrasion degree. The calculated results have shown that the reasonable number of clustering is important to improve the accuracy of clustering analysis results of vibration signals of OLTC. The inter class divergence can recognize the different abrasion degree of OLTC storage spring, which could provide the important reference for the vibration monitoring technology of OLTC mechanical condition.

参考文献/References:

[1] 王福忠,石秀立. 改进PSO-SVM算法的变压器分接开关故障诊断[J].电子测量技术,2016,39(11):190-194.
WANG Fuzhong, SHI Xiuli. Tap-changer fault diagnosis of transformer based on improved PSO-SVM[J]. Electronic Measurement Technology, 2016, 39(11): 190-194.
[2] 李晓明. 一种新型有载分接开关及其分析[J]. 高压电器,2017,53(4):197-202.
LI Xiaoming. New on-load tap changer and its analysis[J]. High Voltage Apparatus, 2017, 53(4): 197-202.
[3] 杨军亭,彭 鹏,温定筠,等. 一起变压器有载分接开关事故分析[J]. 变压器,2016,53(2):64-66.
YANG Junting, PENG Peng, WEN Dingjun, et al. Accident analysis of transformer OLTC[J]. Transformer, 2016, 53(2): 64-66.
[4] 陈徐晶,王丰华,周 翔,等. 变压器有载分接开关机械性能的在线监测及故障诊断[J]. 华东电力,2013,41(7):1515-1518.
CHEN Xujing, WANG Fenghua, ZHOU Xiang, et al. On-line monitoring and fault diagnosis of OLTC mechanical performance[J]. East China Electric Power,2013,41(7):1515-1518.
[5] 史玲玲.一种新型有载分接开关的方案和仿真研究[D]. 济南:山东大学,2015.
SHI Lingling. The scheme of a novel on-load tap changer and its simulation research[D]. Jinan: Shandong University, 2015.
[6] 方跃杭. 变压器有载分接开关故障原因浅析[J]. 变压器,变压器,2011,48(6):62-65.
FANG Yuehang. Brief analysis of on-load tap-changer faults in transformer[J]. Transformer, 2011, 48(6): 62-65.
[7] BENGTSSON C. Status and trends in transformer monitoring[J]. IEEE Transactions on Power Delivery, 1996, 11(3): 1379-1384.
[8] RIVAS E, BURGOS J C, PRADA J C. Condition assessment of power OLTC by vibration analysis using wavelet transformer[J]. IEEE Transactions on Power Delivery, 2009, 24(2): 687-694.
[9] 高 鹏,马宏忠,张惠峰,等.分接开关振动信号EMD熵和小波熵的比较[J].电力系统及其自动化学报,2012,24(4):48-52.
GAO Peng, MA Hongzhong, ZHANG Huifeng, et al. Comparison of EMD entropy and wavelet entropy in vibration signals of OLTC[J]. Proceedings of the CSU-EPSA, 2012, 24(4): 48-52.
[10] 王 冠,刘金鑫,赵 彤,等.基于改进变分模态分解的有载分接开关机械状态监测[J].湖南大学学报(自然科学版),2017,44(10):75-83.
WANG Guan, LIU Jinxin, ZHAO Tong, et al. Mechanical condition monitoring of on-load tap changers based on improved variational mode decomposition[J]. Journal of Hunan University(Natural Science), 2017, 44(10): 75-83.
[11] 赵 彤,张 黎,李庆民.OLTC振动信号的多维空间相轨图几何特征[J].高压电技术,2007,33(8):102-105.
ZHAO Tong, ZHANG Li, LI Qingmin. Feature analysis methodology for phase portrait structure of mechanical vibration signals of on-load tap changers in multidimensional space[J]. High Voltage Engineering, 2007, 33(8): 102-105.
[12] 周 翔,王丰华,傅 坚,等.基于混沌理论和K-means聚类的有载分接开关机械状态监测[J]. 中国电机工程学报,2015,35(6):1541-1548.
ZHOU Xiang, WANG Fenghua, FU Jian, et al. Mechanical condition monitoring of on-load tap changers based on chaos theory and K-means clustering method[J], Proceeding of the CSEE, 2015, 35(6): 1541-1548.
[13] 程东东. 基于自然邻的层次聚类算法研究[D].重庆:重庆大学,2016.
CHENG Dongdong. Study on hierarchical clustering based on natural neighbor[D]. Chongqing: Chongqing University, 2016.
[14] 齐 波,张 鹏,荣智海,等. 基于相空间重构的变压器油色谱数据最优长度选择方法[J]. 中国电机工程学报,2018,38(8):2504-2512.
QI Bo, ZHANG Peng, RONG Zhihai, et al. Optimal length selection method of DGA data based on phase space reconstruction[J]. Proceeding of the CSEE,2018,38(8): 2504-2512.
[15] 李 敏,陈 果,沈大千,等.基于改进凝聚层次聚类算法的变压器绕组及铁心故障诊断研究[J].高压电器,2018,54(1):236-242.
LI Min, CHEN Guo, SHEN Daqian, et al. Research on fault diagnosis of transformer winding and core based on the improved agglomerative hierarchical clustering algorithm[J]. High Voltage Apparatus, 2018, 54(1): 236-242.
[16] 刘 畅,刘天琪,何 川. 考虑空间相关性的风电场等值方法[J].高压电器,2016,52(5):141-147.
LIU Chang, LIU Tianqi, HE Chuan. Equivalent model of wind farms considering spatial correlation[J]. High Voltage Apparatus, 2016, 52(5): 141-147.
[17] ARTHUR D, VASSILVITSKII S. K-means++: The advantages of careful seeding[C]//8th Annual ACM-SIAM Symposium on Discrete Algorithms.[S.l.]:Society for Industrial and Applied Mathematics, 2007: 1027-1035.
[18] JAIN A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666.
[19] DVORK I, KLASCHKA J. Modification of the grassberger-procaccia algorithm for estimating the correlation exponent of chaotic systems with high embedding dimension[J]. Physics Letters A, 1990, 145(5): 225-231.
[20] KIM H S, EYKHOLT R, SALAS J D. Nonlinear dynamics, delay times, and embedding windows[J]. Physica D: Nonlinear Phenomena, 1999, 127(1-2): 48-60.

备注/Memo

备注/Memo:
收稿日期:2020-01-17; 修回日期:2020-03-19 基金项目:国家重点研发计划资助(2017YFB0902700)。 Project Supported by National Key R&D Program of China(2017YFB0902700).刘 君(1982—),男,工学硕士,工程师,主要从事变电设备智能化及故障诊断方面的研究。
更新日期/Last Update: 2020-07-25